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ABSTRACT

ALPHA RADIATION STUDIES AND RELATED
BACKGROUNDS IN THE DARKSIDE-50 DETECTOR

SEPTEMBER 2018

ALISSA E. MONTE

B.A., OCCIDENTAL COLLEGE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrea Pocar

DarkSide-50 is the current phase of the DarkSide direct dark matter search pro-

gram, operating underground at the Laboratori Nazionali del Gran Sasso in Italy.

The detector is a dual-phase argon Time Projection Chamber (TPC), designed for

direct detection of Weakly Interacting Massive Particles (WIMPs), and housed within

a veto system of liquid scintillator and water Cherenkov detectors. Since switching

to a target of low radioactivity argon extracted from underground sources in April

2015, the background is no longer dominated by naturally occurring 39Ar. However,

alpha backgrounds from radon and its daughters remain, both from the liquid argon

bulk and internal detector surfaces. In some cases, the alpha events are a dangerous

background in need of mitigation. In others, the alpha events can be used as a tool

to deepen our understanding of our detector.

We present here several analyses of alpha events in DarkSide-50. An analysis of

radon-polonium coincidences is performed, yielding measurements of ion mobility and

vi



charged daughter fraction in liquid argon. These coincidences are also used to place

upper limits on XY-resolution and liquid argon motion in the detector. A method for

simulating the degraded energy spectra from 210Po events traveling through surface

materials is presented and compared with data from DarkSide-50. Lastly, a pileup

background created by the accidental coincidence of scintillation-only 210Po surface

events with random ionization-like pulses is thoroughly discussed. The estimation

of this background and its mitigation informed the recent WIMP search analysis

performed with 532 live-days of DarkSide-50 data.
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CHAPTER 1

INTRODUCTION

1.1 Evidence for Dark Matter

Scientists are constantly navigating the unknown. We generate theories to explain

the previously unexplained and devise technologies that can observe the previously

unobserved. To minds so focused on inquiry and creation, the most interesting obser-

vations are the ones that surprise us, and the most alluring questions are those yet to

be resolved. It is no wonder then that dark matter and dark energy have captivated

the minds of so many physicists.

Despite millennia of human inquiry in fundamental physics, so little of the matter

and energy content of the universe is familiar to us. The standard model particles

and the atoms that they form make up only 4.9% of the mass energy of the universe.

The other 95.1% is made up of stranger stuff, namely dark matter (26.8%) and dark

energy (68.3%) [1]. The exact nature and characteristics of dark matter remains an

active area of scientific inquiry, fueled by overwhelming astrophysical evidence that

dark matter exists abundantly in the cosmos

In order to place this astronomical evidence into its appropriate context, let us

briefly review the history of the universe. This timeline is reconstructed from the

Big Bang theory in cosmology. It originates from a singularity predicted by General

Relativity when the expansion of the universe is extrapolated backwards in time.

The Big Bang represents the point in our cosmological history at which the universe

entered a regime that can be described by the laws of physics as we understand them.

This occurred (13.799 ± 0.021) billion years ago [1].
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• (T ∼ 1019 GeV, t < 10−43 s) Planck epoch; before the time elapsed was equal

to the Planck time. Current physical theories do not have predictive value at

such small scales. This time is thought to be dominated by the quantum effects

of gravity.

• (T ∼ 1016 GeV, t < 10−36 s) Grand unification epoch; during which three

forces of the Standard Model (electromagnetism, the strong interaction, and

the weak interaction) are unified. Gravity is thought to have separated from

the electro-nuclear force at the end of the Planck epoch.

• (T ∼ 1015 - 109 GeV, t < 10−32 s) Inflationary and electroweak epochs, during

which the universe undergoes extremely rapid exponential expansion, super-

cools, and the strong interaction becomes distinct from the electroweak inter-

action. Electroweak symmetry breaking occurs at the end of the electroweak

epoch and the Standard Model gauge symmetry breaks into SU(3)C ⊗ U(1)Q.

• (T > 100 MeV, 10−12 s < t < 10−6 s) Quark epoch; in which the quark-gluon

plasma is formed but energies are too high for quarks to form hadrons. These are

the highest energies currently achievable by the Large Hadron Collider (LHC).

• (T > 1 MeV, 10−6 s < t < 1 s) Hadron epoch; in which quarks are bound into

hadrons. This is the possible origin of baryogenesis. Electroweak symmetry

breaking occurs and the Standard Model gauge symmetry breaks into SU(3)C

⊗ U(1)Q. This could be the origin of baryogenesis and primordial magnetic

fields.

• (T ∼ 100 keV, 10 s < t < 103 s) Big Bang Nucleosynthesis occurs, neutrons and

protons are bound into light elements (hydrogen, helium, deuterium, lithium).

This period in cosmology will be discussed in further detail in Sec. 1.1.4.
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• (T ∼ 0.4 eV, t ∼ 1013 s (380 ka)) Photon decoupling occurs and produces the

Cosmic Microwave Background radiation (CMB).

• (T ∼ 10−4 eV = 2.7 K, t = 13.8 Ga) Today.

On the time scale just presented, all astronomical observations were performed

during what is considered to be today, but the collection of evidence for the existence

of dark matter has its own rich timeline. It is difficult to pinpoint the first reference

to dark matter that is consistent with our current conception of a mysterious form

of matter that contributes gravitationally to the celestial motions of normal matter.

This is mostly due to the fact that the term is not very descriptive and mostly conveys

our ignorance.

Scientists began to question what may lurk in the dark reaches of the sky as early

as the end of the 19th century, when the budding field of astronomical photography

revealed dark regions between the stars. They wondered whether these dark stretches

represented an absence of stars, or rather some intervening matter that blocked their

view. Lord Kelvin made the first attempt to estimate the number of dark bodies

in the Milky Way galaxy using the velocity dispersions of stars orbiting around the

galaxy’s center. He observed a discrepancy between the implied mass and the observed

luminous matter, and in his 1904 Baltimore Lectures on Molecular Dynamics and the

Wave Theory of Light he concluded that many of our stars may be dark bodies [2].

Henri Poincaré offered a response to Lord Kelvin’s work with The Milky Way and

Theory of Gases, published in 1906 [3]. Poincaré was the first to use the term ‘matière

obscure’ or ‘dark matter’, though he disagreed with Kelvin’s conclusions.

1.1.1 Fritz Zwicky and the Motion of Galaxies

The first major evidence of dark matter came from Fritz Zwicky in 1933 when

he measured the velocity dispersion of galaxies in the Coma galaxy cluster. Velocity

dispersion is the statistical dispersion (like variance or standard deviation) of velocities
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about the mean velocity for a group of galaxies. The velocity dispersion of the cluster

can be used to estimate the mass (M) contributing to gravitational forces within the

cluster through application of the virial theorem. The mass of luminous matter (L)

contained within the cluster can also be inferred from the mass-luminosity relation

in astrophysics.

Zwicky found that the mass-to-luminosity ratio (M/L) was around 400 for the

coma galaxy cluster, when it was expected to be of order 1. This implies that the

cluster constituents would fly apart if only the luminous matter was present. His ob-

servations require the presence of some dark matter, or dunkle materie in the original

German, to keep the cluster stable and consistent with observations. Later calcula-

tions would show this number to be an overestimation.

1.1.2 Vera Rubin and the Motion of Stars

In the 1970s, Vera Rubin made similar measurements on a smaller scale; this

time using the rotation curves of galaxies rather than galaxy clusters. She used an

image tube spectrograph, a new technology that allowed her to make more precise

measurements than ever previously achieved. She found that, contrary to the 1/
√
r

behavior expected from Newtonian dynamics, the rotation curves of galaxies remain

flat away from their centers, see Fig 1.1. Vera Rubin came to the conclusion that

these galaxies must contain 10 times as much dark matter as luminous matter [4], and

that the dark matter must extend out from the galaxy in a halo with mass density

ρ(r) ∼ 1/r2.

1.1.3 Galaxy Cluster Mergers

One incredibly compelling piece of evidence for the existence of dark matter comes

from observations of the Bullet cluster. Over sufficient timescales, galaxy clusters will

form about a centrally symmetric spatial distribution tracing a common gravitational
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Figure 1.1. Rotation curve of spiral galaxy M33. Data from Ref. [5]

potential. Clusters are composed of a stellar component and a plasma component;

the plasma being the dominant baryonic mass component by a factor of five or more.

On spatial scales as large as those considered in a galaxy cluster merger, the indi-

vidual galaxies act like collisionless particles. However, the fluid-like, X-ray-emitting

plasma experiences a ram pressure and decelerates during the collision. The result of

the galaxy cluster collision is that the galaxies spatially decouple from the plasma.

This effect is particularly evident in the notorious Bullet cluster, where the plasma

has been dragged towards the center of the clusters in a characteristic bullet pattern,

which gives the cluster its name.

Figure 1.2 shows the visible spectrum of the stellar component from the Magellan

image of the cluster (left) and the X-ray spectrum of the plasma from the Chandra

X-ray telescope image of the cluster (right). Both images show a green overlay repre-

senting gravitational potential lines determined through weak lensing measurements

made by the Hubble Space Telescope.
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Figure 1.2. Magellan image of the visible spectrum and Chandra X-ray image of
the Bullet cluster. The white bar indicates 200 kpc at the distance of the cluster.
Image from Ref. [6]

As a consequence of General Relativity, massive objects distort their surrounding

spacetime, allowing us to infer the mass galaxies and galaxy clusters from the lensed

images of astronomical bodies behind them. Weak lensing measurements of the Bullet

cluster show that the gravitational potential lines trace the stellar component of the

clusters, despite the fact that the dominant baryonic mass component is the plasma

that is now spatially concentrated between the clusters. This striking observation not

only tells us that there must be a dominant dark matter component in each cluster,

but also that it must be non-interacting, or at least very weakly self-interacting.

This provides a powerful constraint on the self-interaction of dark matter. It is a

particularly notable piece of evidence because it cannot be explained by modified

theories of Newtonian dynamics.

1.1.4 Big Bang Nucleosynthesis

Before Big Bang Nucleosynthesis (BBN), the universe was a hot dense soup of

subatomic particles being annihilated and created in equilibrium. When the universe

cooled and expanded to a sufficient point, neutrons and protons coalesced to form light

elements such as hydrogen (H), helium (3He and 4He), deuterium (D), and lithium
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(7Li). The universe continued to expand and cool until nuclear fusion stopped, leaving

behind the light elements which would form the earliest stars. The abundances of

light elements at the end of BBN can be predicted by nuclear physics and known

reaction rates [7].

The prediction of the abundances of light elements at the end of BBN can be con-

firmed with observations of very distant, and therefore very old, parts of the universe.

In these areas the elemental abundances are closest to their BBN-era values. Such

observations agree very well with theoretical predictions, as illustrated in Fig. 1.3.

Most importantly, predictions and observations from BBN confirm that baryonic

matter can only constitute a small fraction of the mass-energy of the universe. General

Relativity tells us that the expansion rate of the universe depends on the amount

of matter present. Right after the big bang, equal numbers of neutrons (n) and

protons (p) were present. Over time, neutrons decay into protons and the ratio n/p

decreases. An increase in baryonic matter in the early universe would have driven

a faster expansion giving less time for the n/p ratio to decrease before the universe

reached the temperatures during BBN. This would change the fractional abundances

of the light elements, as for many of them their maximum allowed value is set by n.

As seen in Fig. 1.3, observations are consistent with a baryonic abundance of Ωb ≈

0.04.

1.1.5 Cosmic Microwave Background

The Big Bang model of cosmology describes the earliest stages of the universe

as a period of rapid expansion known as inflation, followed by a slower expansion

during which time the universe was a hot dense plasma of ionized particles. Because

of the density of particles, photons and baryons were coupled in the early universe;

the photons had very short scattering lengths and the plasma was opaque. During

this time of slow expansion, the plasma compressed and expanded in acoustic oscil-
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Figure 1.3. Abundances of light elements after BBN as a function of baryon density.
Predictions appear as colored bands, observations as black boxes and arrows. Image
from Ref. [8]
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lations due to the competition between gravitational attraction and electromagnetic

pressure. Once the universe had expanded and cooled such that the temperature fell

below the atomic ionization energy threshold, the plasma could form neutral atoms

and the photons could decouple from the plasma. This period is known as recom-

bination, and the free streaming photons from that moment of decoupling are the

ones we observe today as the Cosmic Microwave Background (CMB). Today they

have a temperature of 2.73 K, a factor of ∼1000 reduction from the ”surface of last

scattering” where/when they were emitted.

Observations of the CMB provide the most precise estimates of the amount of

baryonic and dark matter present in our universe, and give us information about

cosmological structure formation. Due to the acoustic oscillations of the hot plasma in

the early universe, there are small anisotropies in the otherwise uniform relic radiation

that makes up the CMB, pictured in Fig. 1.4. A temperature map of the CMB

yields information about density fluctuations at the time of recombination. The

cosmological structure that we observe today requires structure formation to begin in

the era before recombination, which is only possible if a neutral form of matter (such

as dark matter) was present.

Fig. 1.5 shows the power spectrum of the CMB temperature anisotropies measured

by the Planck experiment in 2015. A great deal of information about the universe

can be extracted from this power spectrum; from the geometry of the universe to the

abundance of baryonic and dark matter. The location of the first peak in the power

spectrum is governed by the sound horizon, or the maximum distance a sound wave

can travel. This is related to the size of the largest structures in the period before

recombination. If the universe is flat, we would expect this peak to be ∼1◦, or with a

multipole moment of ∼200. The Planck experiment has measured the location of the

first peak to be at 1◦ with excellent precision, confirming that the universe is flat.
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Figure 1.4. CMB temperature map derived from the joint baseline analysis of
Planck, WMAP, and 408MHz observations. Image from Ref. [9]

We can also use the relative amplitudes of the power spectrum peaks to determine

the abundance of baryonic and dark matter in today’s universe. The power spectrum

in Fig. 1.5 is fit with a six parameter model of the ΛCDM model in cosmology (Λ being

a representation of the cosmological constant, or dark energy, and CDM standing for

Cold Dark Matter). This fit provides the highest precision measurements of the

fractional contributions to the total mass-energy of the universe: Ωb = 0.049, ΩDM =

0.258, and ΩΛ = 0.693 [1], where the Ωis represent the fractional density of baryons,

dark matter, and dark energy respectively.

1.2 Dark Matter Candidates

Despite the overwhelming evidence for its existence, we know shockingly little

about dark matter. All we know is that it does not interact electromagnetically (or

if it does couple to photons, it does so very weakly), it interacts gravitationally with

normal matter, it accounts for 25.8% of the mass energy of the universe, and it is

likely to be cold (non-relativistic in the early universe) given observed cosmological
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Figure 1.5. Planck 2015 temperature power spectrum. Image from Ref. [1]

structure. We do not know what particle it could be, its mass or interaction cross

section– or if it even is a particle for that matter.

1.2.1 Baryonic Dark Matter

Naturally, the first explanations for dark matter were baryonic in nature. It

was proposed that MAssive Compact Halo Objects (MACHOs) in the form of white

dwarfs for neutron stars could populate galactic halos, accounting for observations.

MACHOs can be searched for using microlensing. In this case, the passage of a

non-luminous body in front of a distant luminous object is detectable as a transient

change in brightness due to gravitational lensing. Microlensing measurements place

an upper limit on the amount of MACHOs in the galactic halo, indicating that they

can make up no more than 20% of dark matter [10].

Black holes are also considered as dark matter candidates. Those formed from

stellar collapse, like the supermassive black holes at the centers of active galactic

nuclei, are ruled out by CMB measurements and Big Bang Nucleosynthesis. However,

black holes formed when the universe was still a hot plasma, known as primordial
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black holes, remain a viable dark matter candidate. Depending on the theoretical

model, primordial black holes can have masses ranging from 10−8 kg to thousands of

solar masses (1000 × 2 × 1030 kg). In order to be a dark matter candidate, primordial

black holes would have to be of sufficient mass to have survived to the current epoch

without evaporating by emission of Hawking radiation (> 1011 kg). Constraints from

big bang nucleosynthesis further limit the viable mass range for primordial black hole

dark matter candidates [11]. However, primordial black holes in the range of 20 to

100 solar masses remain viable dark matter candidates, and the LIGO experiment

recently detected gravitational waves from the merging of a binary black hole system

of 30 solar mass black holes [12]. LIGO has since observed five additional confirmed

gravitational wave signals, four of which came from binary black hole mergers. The

LIGO observations have rekindled interest in primordial black holes as a dark matter

candidate, but more study is needed.

1.2.2 Hot, Warm, Cold Dark Matter

In the previous section we established that dark matter must be, at least in large

part, non-baryonic. A non-baryonic dark matter candidate can be classified by its

Free Streaming Length (FSL), or the distance a particle could travel due to random

motions in the early universe. We define three categories of dark matter candidates

based on FSL; hot, warm, and cold dark matter. The FSL of each candidate is

important because it sets the minimum scale for structure formation. If a dark matter

candidate is abundantly present in the early universe, density fluctuations smaller its

FSL get washed out by its motion.

The leading candidates for hot dark matter are neutrinos. Neutrinos, postulated in

1930 and discovered in 1956 [13], are non-baryonic, electrically neutral particles that

are abundant in today’s universe. Most importantly, due to the discovery of neutrino

flavor oscillations we now know that neutrinos have mass [14, 15]. Unfortunately,
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measurements of the CMB have constrained the sum of the neutrino masses to be

< 0.23 eV [1], significantly less than is required to account for the missing dark

matter. The rest mass of the neutrinos is so small that they have a FSL larger than

a protogalaxy. Hot dark matter is now thought to be an unlikely model because it

leads to ‘top-down’ structure formation where large structures form first and produce

smaller structures later through fragmentation. Deep field observations [16] show that

galaxies form before clusters and larger structure, disfavoring hot dark matter.

Warm dark matter candidates have a FSL on the order of a protogalaxy. Warm

dark matter may provide a mechanism for explaining the core-cusp [17] problem

observed in dwarf galaxies. Unfortunately, there are no well-motivated dark matter

candidates in the required energy range for warm dark matter.

Cold dark matter is the favored explanation for cosmological observations, playing

a prominent role in the ΛCDM model in cosmology. Candidates in this category

have a FSL much smaller than a protogalaxy, leading to the bottom-up formation

of structure through gradual accumulation of particles. Cold dark matter candidates

most notably include axions and Weakly Interacting Massive Particles (WIMPs).

Axions are hypothetical elementary particles postulated to resolve the strong CP

problem in quantum chromodynamics. The proposal of the Peccei-Quinn mechanism

[18] provides an elegant solution to this problem; adding a new global U(1) symmetry

that is spontaneously broken, resulting in a new particle that relaxes the CP violation

parameter to zero to be consistent with observations. This new hypothetical particle

is a goldstone boson called the axion, and if it is abundant enough, it could be a

principle component of cold dark matter in the universe. There are a number of

experiments currently searching for axions in the mass range of 10−6 − 10−3 eV.

Experiments such as ADMX and CAST search for astrophysical axions using the

Primakoff effect, by which axions and photons can be converted into each other via

electromagnetic fields. ADMX seeks to detect axions from the galactic halo on earth

13



by converting them to photons using a strong magnetic field [19]. CAST seeks to

detect solar axions by converting them to x-rays using strong magnetic fields [20].

1.2.3 WIMP Dark Matter

A popular hypothesis is that cold dark matter is made up of Weakly Interacting

Massive Particles (WIMPs). WIMPs have gravitational and weak interactions, a

mass in the 1 GeV/c2 to 100 TeV/c2 range, and an interaction cross section with

nucleons in the weak range (10−40 − 10−50 cm2). This candidate is well-motivated by

the fact that the relic abundance of dark matter observed in today’s universe implies

a particle with an interaction cross section on the weak scale [21].

When the universe was a hot dense plasma, whatever dark matter was present

would have been in thermal equilibrium; annihilating to form lighter particles and

being produced through the annihilation of other particles. The rate of annihilation

and production of dark matter depends on the density of particles and the rate of

expansion of the universe. As the universe cooled and expanded, the ambient tem-

perature fell below the threshold for production of new dark matter. The universe

continued to expand until the density became low enough that annihilations ceased

and the abundance of dark matter froze out to be roughly what we observe today.

The relic abundance of dark matter today is determined by its interaction cross

section [22]:

Ωχ ∝
1

〈σv〉

where ΩX is the relic abundance of dark matter, σ is the total dark matter annihilation

cross section, and v is velocity. The brackets denote a thermal average. Given the

relic abundance of dark matter, Ωχ = 0.258, the thermal average is approximately

〈σv〉 ≈ 3× 10−26 cm3s−1, which is roughly what one would expect for a new particle

of mass ∼100 GeV interacting via the weak force.
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WIMP-like particles are predicted by supersymmetric extensions to the standard

model that conserve R-parity, independent of dark matter considerations. The coinci-

dence that a weakly interacting massive particle provides the correct relic abundance

observed for dark matter is known as the “WIMP miracle”. In particular, the light-

est supersymmetric particle is an attractive WIMP dark matter candidate because it

would be stable by virtue of being lightest.

From this point forward we narrow our discussion to focus on WIMPs as a sole

candidate of interest for dark matter, unless otherwise specified. It is worth summa-

rizing at this point the known characteristics of a WIMP:

• Electrically neutral

• Gravitationally and weakly interacting

• Mass range: 1 GeV/c2 to 100 TeV/c2

• Interaction cross section with nucleons: 10−40 − 10−50 cm2

• Stable (τX >> τU)

1.3 Methods of Detection

There are three ways that scientists today are actively seeking answers about

WIMP dark matter; collider searches, indirect detection, and direct detection. These

methods are summarized in Fig. 1.6, which can be read horizontally or vertically to

represent different particle interactions. In collider searches (right to left in Fig. 1.6),

standard model particles are collided to produce light dark matter candidates, which

would then ‘register’ as missing momentum or energy. Detecting dark matter through

this method would tell us that a candidate exists and can be produced, but cannot

prove that the discovered particle accounts for any or all of the missing mass. Indirect

searches (left to right in Fig. 1.6) aim to observe an excess of standard model particles
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Figure 1.6. Summary of the particle interactions central to collider production,
indirect detection, and direct detection of dark matter.

from dark matter annihilations above the expected rates for cosmological sources.

This method is limited by uncertainties in the dark matter halo structure of our

galaxy and our imperfect knowledge of all cosmological sources of standard model

particles. Lastly, direct detection (bottom to top in Fig. 1.6) aims to observe the

scattering of dark matter off of atomic nuclei.

1.3.1 Collider Production

Collider searches, like those performed at the Large Hadron Collider (LHC) at

CERN, look for missing mass in standard model annihilations. Unfortunately, con-

straints on dark matter candidates from collider experiments are highly model-dependent

and are difficult to discuss generally. A summary of dark matter search results from

the ATLAS and CMS experiments at the LHC can be found in Refs. [23] and [24].

1.3.2 Indirect Detection

Indirect detection experiments aim to observe an excess of standard model parti-

cles from the annihilation or decay of dark matter. Though the general dark matter
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density in our galactic halo is below that required for detectible dark matter annihi-

lations, there are circumstances that may create areas of higher dark matter density.

One such mechanism is that dark matter particles can lose energy by scattering off of

atoms when passing through the Earth or the Sun. These dark matter particles could

then become trapped, eventually accumulating a higher density and increasing their

probability of annihilation. High energy neutrino telescopes such as IceCube [25],

AMANDA [26], and ANTARES [27] look for high energy neutrinos produced through

dark matter annihilations in the sun.

Indirect detection experiments can also search for gamma rays as a result of astro-

physical dark matter annihilations. The Energetic Gamma Ray Experiment Telescope

(EGRET) and the Fermi Gamma-ray Space Telescope (FGST) are two space obser-

vatory experiments that perform gamma ray astronomy observations from low Earth

orbit. Both experiments searched for an excess of gamma rays from the Milky Way

galaxy as a potential indirect dark matter signal. In 2008 EGRET observed such an

excess, but later investigations implied the true cause was an error in the estimation

of their sensitivity above ∼1 GeV in energy [28]. In 2012 an analysis of previous

FGST data from the Large Area Telescope showed evidence for a gamma ray line

at Eγ ≈ 130 GeV with a significance of 3.2σ when the look-elsewhere-effect is taken

into account [29]. This observation is well-explained by the presence of WIMP dark

matter in the galactic halo, but years of additional data are required for confirmation.

One can also search for dark matter annihilation signals in the form of positrons.

The Alpha Magnetic Spectrometer (AMS) module mounted on the International

Space Station measures positrons in cosmic rays. AMS began taking data in 2011,

and reported in 2013 that they observed a steadily increasing positron fraction from

10 to 250 GeV, with a slope that decreases by an order of magnitude from 20 to

250 GeV [30]. They concluded that their observations were consistent with new

physical phenomena, but additional study is needed. Payload for Antimatter Matter
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Exploration and Light-nuclei Astrophysics, or PAMELA, was a cosmic ray module

attached to a satellite in orbit of Earth that studied positrons from 2006 to 2016. In

2009, PAMELA published observations of an anomalous positron abundance in 1.5 to

150 GeV cosmic rays [31]. They concluded that a primary source of positrons is nec-

essary to explain their observations, but could not distinguish between dark matter

annihilations or another astrophysical object (pulsars for example) as the cause.

Unfortunately, all indirect searches are limited by the fact that many cosmological

sources produce the same signals expected from dark matter (gamma rays, positrons,

neutrinos). Multiple observations will inevitably be required for conclusive discovery

by this method.

1.3.3 Direct Detection

Perhaps the most powerful method to detect WIMPs is via direct detection. In

this case we aim to observe the scattering of dark matter off of atomic nuclei by

specifically measuring the energy of a recoiling nucleus. In this case the recoil energy

gives you information about the mass of the interacting dark matter particle. Given

the energies considered here, we usually model the WIMP-nucleus interaction as a

non-relativistic elastic scatter. The nuclear recoil energy (Er) can be described by:

ER =
µ2v(1− cosθ)

mN

(1.1)

where v is the magnitude of the velocity of the WIMP relative to the nucleus, θ is the

scattering angle in the center of mass frame, mN is the mass of the target nucleus,

and µ is the reduced mass of the WIMP-nucleus system:

µ =
mχmN

(mχ +mN)
(1.2)

where mχ is the WIMP mass.

18



As an example, consider a 100 GeV WIMP with a velocity typical of WIMPs in

our galactic halo (220 km/s, to be discussed in the next section) colliding with an

argon nucleus (∼35 GeV). This WIMP-Ar interaction would produce a nuclear recoil

of ∼10 keV. This is a relatively low-energy event. Direct detection experiments need

to have appropriate energy sensitivity, but more importantly they require shielded

environments, radio-pure construction materials, calibration, and excellent means of

particle identification and discrimination. These experiments search for signals at the

level of a handful events over the lifetime of a detector; a signal significantly more rare

than the ambient radioactivity, even in the best-shielded underground laboratories.

1.3.3.1 WIMP Event Rate

Our solar system orbits the center of the Milky Way galaxy. The WIMPs that

comprise the dark matter halo around our home galaxy move on various orbits around

the galactic center. WIMPs passing through the vicinity of the sun are likely to have a

comparable orbital velocity, with variations due to orbital eccentricity. The tangential

components of WIMP velocities are thought to be evenly distributed in all directions.

As a result, the average orbital velocity of the galactic WIMP halo is quite slow, and

there is an average relative motion between the halo and Earth. The WIMP velocity

in the galactic rest frame can be most simply described by a Maxwell-Boltzmann

distribution with a velocity of 220 km/s, and the local dark matter density is typically

ρχ = 0.3 GeV/cm3 [32]. Dark matter-only cosmological simulations of Milky Way-

like halos find that the distribution of dark matter mass at the position of our solar

system is smooth [33], with a velocity distribution that is close to Maxwellian.

Given the local density and velocity dispersion of the dark matter halo, we can

define a differential rate of WIMP-induced nuclear recoils per unit detector mass

(typically defined in units of counts/kg/day/keV):
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dR

dER
(E) =

σρχ
2µmχ

A2F 2(E)

∫ vesc

vmin

f(v)

v
d3v (1.3)

where ρχ is the local dark matter density, µ is the reduced mass of the WIMP-

nucleon system described by Eq. 1.2, mχ is the WIMP mass, A is the atomic number

of the target nucleus, F is the nuclear form factor for the target nucleus, vmin =√
mNER/2µ2 is the minimum WIMP velocity capable of generating a nuclear recoil

of energy ER, vesc is the maximum WIMP velocity (the escape velocity in our dark

matter halo model), and f(v) is the velocity distribution of WIMPs in the halo with

respect to the lab frame. Eq. 1.3 assumes a spin-independent WIMP-nucleon coupling

with identical couplings to neutrons and protons [34,35].

The presence of the A2 in Eq. 1.3 means that heavier target nuclei will yield higher

event rates for coherent scattering of WIMPs with a given interaction cross section.

The integral over velocities is discussed in detail in [35] and yields a roughly exponen-

tial spectrum. The integral rate of dark matter interaction in units of counts/kg/year

for various targets (Xe, Ge, Ar, Ne) is shown in Fig. 1.7, where the markers in-

dicate typical WIMP-search thresholds for each technology. An isothermal halo

of 100 GeV/c2 WIMPs with 10−45 cm2 interaction cross section per nucleon. The

plot assumes perfect energy resolution and the markers denote typical WIMP search

thresholds for each technology.

As illustrated in Fig. 1.8 the net velocity of Earth relative to the dark matter

halo varies annually due to the motion of the Earth around the sun. The velocity of

the Earth relative to the Sun in the direction of the Sun’s galactic orbit is denoted

by v//, which varies up to 30 km/s (the maximum orbital velocity of Earth) [37].

We therefore expect an annual modulation in the WIMP event rate that peaks in

December for low recoil energies and in June for high recoil energies. The amplitude

of the modulation is small and can be written approximately as a Taylor series:
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Figure 1.7. Integrated WIMP event rate for several detector materials. Image from
Ref. [36]
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dR

dER
(E, t) ≈ dR

dER
(E)[1 + ∆(E)cos(

2π(t− t0)

T
)] (1.4)

where dR/dER(E) is described by Eq. 1.3, t0 is ∼150 days, T is the period of modu-

lation (1 year), and ∆(E) describes the fractional amplitude of the modulation. For

the standard halo model, ∆(E) can be described by [38]:

∆(E) ≈


−0.034

(
1− x2

x2p

)
, x < xp

0.014
(
x
xp
− 1
)(

x
xp

+ 3.7
)
, xp < x < z

(1.5)

where x = vmin/vc, xp = 0.89 is the value of x at which the sign of the modulation

reverses, and z = vesc/vc. For measurable energies the amplitude of the modulation

is 1 - 10% of the event rate.

One can also expect a directional dependence of the signal due to the rotation

of the earth about its axis. The WIMP flux in the frame of the detector is peaked

towards the constellation CYGNUS, whose motion we follow as we orbit the galactic

center. The direction of recoils induced by WIMP scatters is peaked opposite to

this, providing a directional signal that is much larger than the expected annual

modulation. In fact, the ratio of the event rate in the forward direction relative to

backwards direction varies from 4 to 28, depending on the incident WIMP velocity

[39]. There are only a small number of experiments with directional sensitivity, but

the directional technique provides an excellent means of background discrimination

since most backgrounds produce an isotropic recoil distribution.

The biggest challenge in the direct detection of dark matter is background dis-

crimination and rejection. The low expected rate of WIMP interactions in these

experiments requires ultra low radioactive backgrounds. The expected WIMP signal

is a low energy nuclear recoil (a few tens of keV), and despite its exotic origin it is

an otherwise normal signal. Ambient radioactivity can produce low energy electron

recoils through γ-rays and beta particles. It is particularly important that WIMP
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Figure 1.8. Annual modulation of a WIMP signal. Image from
https://www.hep.shef.ac.uk/research/dm/intro.php

detectors be capable of discrimination between electronic and nuclear recoils. Neu-

trons, both radiogenic and cosmogenic, form a dangerous background because they

too can produce low energy nuclear recoils. Luckily, neutrons often interact more

than once in a detector volume, which separates them from WIMPs that will only

interact once. Degraded alpha particles from radioactive decay on surface materials

can also produce low energy nuclear recoils. These events can be removed by fidu-

cialization; the selection of an inner volume of the detector. However, one typically

wants to limit fiducialization because the sensitivity of a detector scales with volume.

Detector technologies that are easily scalable to large volumes are advantageous.

1.3.3.2 Technologies and Techniques

The technologies employed in direct detection experiments are varied and numer-

ous. These detectors use materials that convert the energy from a WIMP-induced

recoil into a detectible signal in the form of scintillation, ionization, or heat. Experi-
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Figure 1.9. Annual modulation observed by DAMA and DAMA/LIBRA. Image
from Ref. [41]

ments utilizing scintillating crystals, superheated fluids, low pressure gases, and noble

liquids will be discussed here. A more complete discussion can be found in Ref. [40].

Experiments utilizing scintillating crystals at room temperature cannot separate

signal and background on an event-by-event basis. However, the relative simplicity

of this technology allows it to be operated over many years, facilitating searches for

annual modulation in the induced event rate. The most famous of these experiments

is DAMA/LIBRA, which utilizes ultra-low radioactivity NaI(Tl) crystals housed in

low-radioactivity copper boxes that are continuously flushed with nitrogen. Over 14

annual cycles of data, the DAMA collaboration has observed an annual modulation of

2-6 keV events that is consistent with dark matter interactions at a confidence level of

9.3σ [41], see Fig. 1.9. Unfortunately, their results are in tension with null results from

many other experiments exploring the same range of WIMP mass and interaction

cross section. Several experiments (COSINE [42], ANAIS [43], and SABRE [44])

utilizing similar technology are under development, or are currently taking data, in

order to resolve this tension.

Bubble chamber detectors, like PICO [45], employ superheated fluids held slightly

below their boiling points. Incoming particles that deposit energy in the detection

medium induce bubble nucleation. These detectors can be tuned so that only par-
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ticle interactions of a certain type, nuclear recoils versus electron recoils, can create

a bubble of sufficient size to be observed. They gain further event discrimination

acoustically, as particles with different linear energy transfer will produce different

sounds upon collapse of the resulting bubble [46].

Directional detectors typically employ low-pressure gas Time Projection Chamber

(TPC) technology. In low-pressure gas, the track of a nuclear recoil is large enough

to be resolved, allowing for advantageous directional sensitivity. However, this makes

these detectors very hard to scale to volumes large enough to produce sufficient in-

teraction rates. Commonly used gases include CS2, CF4, and 3He, the last two of

which are sensitive to spin-dependent WIMP interactions due to the presence of un-

paired nucleons. The DRIFT-II experiment [47] is currently the largest directional

detector and utilizes a mixture of CS2:CF4:O2 gas in a negative-ion TPC with signals

collected by Multi-Wire Proportional Counters (MWPCs). The direction of recoils

within the detector can be determined by the location of the Bragg peak in the result-

ing hit pattern on the MWPCs. DRIFT takes advantage of the presence of multiple

species of negative ions in the detector, which drift at different velocities, allowing

fiducialization in the drift direction.

Cryogenic bolometers have the ability to probe low WIMP masses because of their

low energy thresholds and excellent energy resolution of the induced phonon signal.

If scintillation or charge signals are additionally collected, then the experiment gains

the ability to discriminate between electronic and nuclear recoils. The CDMS exper-

iment uses germanium [48] and silicon [49] bolometers, exploiting both the phonon

and charge signal to discriminate between events. Recently the collaboration has

focused on CDMSlite (low ionization threshold experiment) [50], in which the bias

voltage across a germanium crystal is increased to exploit the Neganov-Luke effect,

amplifying the phonon signal. This modification greatly improves the energy thresh-
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old and resolution of the detector, while sacrificing the charge signal and therefore

the capability for event discrimination.

Noble liquid scintillator experiments lead the field for direct detection of WIMP

dark matter. These experiments take advantage of large, homogenous targets with

high scintillation and ionization yields. There are several current experiments utiliz-

ing xenon (LUX [51], XENON [52], PandaX [53]) and argon (ArDM [54], DEAP [55],

DarkSide [56]). The primary signal in these experiments is scintillation light. With

the exception of DEAP, the named experiments collect the ionization signal as well.

Liquid argon (LAr) and liquid xenon (LXe) both produce ultraviolet scintillation light

at 128 nm and 175 nm respectively. Xenon experiments typically directly detect this

scintillation light using photomultiplier tubes (PMTs) with quartz windows, trans-

parent at 175 nm. In argon experiments, it is typical to use a wavelength shifter

to convert the ultra violet scintillation light into the visible range before collection

by PMTs. Ionization can be detected by two methods; direct collection onto wire

planes or by conversion into a secondary scintillation signal via electroluminescence

in dual-phase detectors.

In order to distinguish between electronic and nuclear recoils, xenon experiments

take advantage of the relative size of primary scintillation (S1) to charge signal (S2).

Argon experiments gain additional discrimination power via pulse shape discrimina-

tion owed to the unique timing of the S1 signal for electronic versus nuclear recoils.

Details of the scintillation mechanism for noble liquids are discussed in Sec. 2.1.

1.3.3.3 Current Status of the Field

As we have seen in the previous section, there are many experiments using var-

ied technologies towards the direct detection of dark matter. The two quantities of

interest in searches for dark matter are the WIMP mass and interaction cross sec-

tion for WIMP-nucleon scattering. WIMP search results are typically stated with
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respect to the WIMP mass vs. cross section parameter space. At WIMP masses

above 100 GeV/c2, no signal has been detected and experiments are only able to set

exclusion limits. The limits in this mass range are dominated by the noble liquid

experiments, which have unparalleled sensitivity in this range due to the mass of the

target nuclei. (As demonstrated in Eqs. 1.1 and 1.2, the most efficient momentum

transfer occurs between colliding particles of equivalent mass).

In the low mass regime there is tension between the small number of experiments

that have observed hints of a WIMP signal and other experiments that have extended

sensitivities with null results. DAMA has already been discussed. CRESST observed

an excess of events corresponding to a WIMP mass of 11.6 GeV/c2 at 4.2σ significance

or 25.3 GeV/c2 at 4.7σ [57]. However, the CRESST signal can be explained by the

ion sputtering caused by 206Pb recoils and alpha particles from the decay of 210Po,

combined with surface roughness [58]. CDMS-Si and CoGeNT have also observed

potential signals at ∼8 GeV/c2 [49, 59]. However, the CoGeNT signal comes purely

from an annual modulation analysis, whereas CDMS-Si has seen no evidence of annual

modulation in their excess of events.

A partial summary of spin-independent cross section exclusion limits (curves) and

possible WIMP signals (shaded closed regions) are shown in Figures 1.10 and 1.11.

The x-axis represents WIMP mass in units of GeV/c2 and the y-axis represents the

WIMP-nucleon cross section in units of cm2. The shaded region bounded by the

gray dashed line in Fig. 1.10 represents the coherent neutrino floor for an argon

target. (The region is also present below the cutoff of the y-axis in Fig. 1.11). This

region represents the approximate point at which experiments become sensitive to

neutrinos from 7Be, 8Be, atmospheric sources, and diffuse supernovae. These neutrino

interactions form an irreducible background to direct detection experiments without

directional sensitivity.
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Figure 1.10. Summary of spin-independent exclusion limits and possible signals in
the low-mass regime taken from Ref. [60]
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Figure 1.11. Summary of spin-independent exclusion limits and possible signals in
the high-mass regime taken from Ref. [56]
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CHAPTER 2

THE DARKSIDE EXPERIMENTAL PROGRAM

Following the overview of direct detection in the previous chapter, we focus now

on one noble liquid experiment; specifically DarkSide. The DarkSide experimental

program utilizes a dual-phase argon Time Projection Chamber (TPC) nested within

a Liquid Scintillator Veto (LSV) and Water Cherenkov Detector (WCD) to search

for WIMPs. The current phase of the program, the DarkSide-50 detector with 50 kg

of active mass, is housed underground at the Laboratori Nazionali del Gran Sasso

(LNGS) in Italy. DarkSide uses several techniques to suppress background, the most

important of which is pulse shape discrimination on the primary scintillation signal

S1. Further background suppression is achieved by an active neutron veto and use of

argon from underground sources depleted in the radioactive isotope 39Ar. DarkSide-

50 is the first physics detector of the DarkSide program. It produced a WIMP search

result using atmospheric argon (AAr) in 2014 [61] and another with underground

argon (UAr) in 2015 [62], as well as recent results in 2018 for high mass WIMPS [56]

and low mass WIMP-nucleon [60] and WIMP-electron interactions [63].

2.1 LAr Scintillation and Pulse Shape Discrimination

To understand the most powerful feature of liquid argon, its capability for pulse

shape discrimination, we must discuss the transfer of energy from particle interactions

with noble liquids. In fact, the discussion here is general to xenon or argon. Full

details can be found in Ref. [36].
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The energy transferred from a particle incident upon the detection medium is

split between three channels; excitation, ionization, and heat. Electron recoil (ER)

events are induced by βs and γs, which scatter many times off of many argon atoms,

directly producing excitation and ionization. Nuclear recoils (NR) events are induced

by WIMPs or neutrons, which scatter off argon nuclei that then excite and ionize the

surrounding argon atoms. It is important to note that in the case of nuclear recoils,

a large amount of the incident particle energy is transferred into kinetic energy of

the target atom (heat) that is not detectable. This is referred to as nuclear energy

loss, or nuclear quenching. Because of this quenching, it is customary to use different

units of energy for nuclear and electron recoils: keVnr and keVee, respectively.

There are two paths to the production of scintillation in LAr; direct atomic exci-

tation and recombination. Atomic excitation takes the form of excited argon dimer

states (called excimers or excitons depending on convention). Scintillation light from

direct atomic excitation is produced as follows [36]:

Ar∗ + Ar → Ar∗,ν2 excimer formation (2.1)

Ar∗,ν2 + Ar → Ar∗2 + Ar relaxation (2.2)

Ar∗2 → Ar + Ar + hν emission (2.3)

Here, the superscript ν distinguishes excited states with vibrational excitation from

purely electronic excitation. Excimers can form in either a singlet or triplet state

depending on the quantum mechanical alignment of the spins of the constituent argon

atoms. Direct transition from the triplet state is forbidden, but the decay of a triplet

state exciton is made possible by the mixing between states induced by spin-orbital

coupling. This leads to longer decay times for the triplet state, which for pure LAr

is τtriplet ≈ 1.6 µs (the presence of impurities can reduce this value, as they enable

additional decay paths). The effect of spin-orbital coupling is stronger for molecules
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Element Triplet Lifetime
He 13 s
Ne 15 µs
Kr 85 s
Ar 1600 ns
Xe 22 ns

Table 2.1. Table of triplet lifetimes for selected noble elements.

with higher atomic number, leading to a roughly inverse relationship between atomic

number and the triplet lifetime. As a result, the triplet lifetime for xenon is quite short

(22 ns). The triplet lifetimes for various noble liquids can be found in Tab. 2.1 [64].

Alternatively, scintillation can be produced through the recombination of ions and

electrons from ionization. This recombination occurs ∼ps after the initial particle-

target interaction that produced the original ionization. Scintillation light from re-

combination is produced as follows [36]:

Ar+ + Ar + Ar → Ar+
2 + Ar (2.4)

e− + Ar+
2 → Ar∗∗ + Ar recombination (2.5)

Ar∗∗ + Ar → Ar∗ + Ar + heat (2.6)

Ar∗ + Ar + Ar → Ar∗2 + Ar + heat (2.7)

Ar∗2 → Ar + Ar + hν emission (2.8)

The final stage of scintillation recombination is similar to that of direct excitation

and therefore the emitted wavelengths and lifetimes for de-excitation are similar.

However, the relative population of singlet and triplet states are different between

the two mechanisms. The timescale for recombination is somewhat long and in some

cases, like for xenon, can be comparable to the excimer de-excitation times, mimicking

a third decay component.
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The relative contribution of each component (direct excitation, ionization, re-

combination) to the overall scintillation depends on particle type and energy. The

stopping power (dE/dx) for recoiling nuclei is higher than that for electrons, leading

to higher density tracks from nuclear recoils. The track density effects recombination

and the formation of singlet (shorter lived) and triplet (longer lived) states. As a

result, nuclear recoils have a higher singlet/triplet ratio and produce more prompt

scintillation than electron recoils. The well-separated lifetimes of the singlet and

triplet states in liquid argon allows for powerful discrimination between nuclear and

electron recoils using Pulse Shape Discrimination (PSD) of the primary scintillation

signal. In DarkSide-50, the discrimination power of PSD alone has been measured to

be 107 [61], meaning that we can reject 107 electron recoil events for every 1 nuclear

recoil event that is classified incorrectly.

So far, our discussion has focused on event energy that has been channeled into

scintillation, whether through direct excitation or recombination. However, in the

presence of an external electric field there can be some fraction of ionization electrons

that do not recombine, and many noble liquid experiments take advantage of this

secondary signal. The ratio of ionization to scintillation depends on the incident

particle type and energy as well the external field strength. Liquid xenon experiments

the ionization to scintillation ratio is the main means of discrimination.

There are a large number of xenon and argon experiments currently competing

in the direct detection parameter space. Both elements have pros and cons. They

share some traits in common; they are both efficient scintillators, transparent to their

own scintillation light, and easily scalable to larger target volumes. Liquid xenon has

little intrinsic contamination, is easy to purify, has reasonable event discrimination via

scintillation/ionization, but is expensive ($120 per 100 g). Liquid argon has excellent

discrimination ability via pulse shape discrimination, is cheap (50c per 100 g), but
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contains the radioactive beta emitter 39Ar. DarkSide has addressed the issue of 39Ar

contamination by extracting argon from underground sources.

2.2 Underground Argon

Natural argon is predominantly composed of stable 40Ar produced by electron

capture on 40K [65]. This process mostly occurs underground. The argon then diffuses

into the atmosphere where cosmic ray spallation of 40Ar also produces 39Ar, or 39Ar is

produced by neutron capture on 39K. The radioactive isotope 39Ar is a beta emitter

with a half-life of 269 years, a Q value of 565 keV, and an abundance in natural

atmospheric argon of (1.08 ± 0.08) Bq/kg [66]. The concentration of 39Ar in an

underground argon deposit depends on the local neutron flux, free neutrons produced

from cosmic ray muons and free neutrons from (α, n) reactions from decays of U and

Th chain elements in the surrounding rock.

In 2007, sources of underground argon with reduced concentrations of 39Ar were

identified in Texas, New Mexico, and Colorado. In 2010 a plant was installed at

the Kinder Morgan CO2 facility in Cortez, CO to extract depleted argon, present at

the 500 ppm level, from the facility’s gas stream [67]. The extracted gas was then

sent to Fermilab where it underwent cryogenic distillation to produce detector-grade

argon with ppb levels of impurities [68]. The underground argon was put into use in

DarkSide 50 in April 2015, and 70 live-days of underground argon data were used to

measure a 1400-fold reduction of 39Ar in underground argon relative to atmospheric

argon [62].

2.3 Dual-Phase Argon TPC: DarkSide-50

DarkSide-50 (DS-50), the current phase of the DarkSide experimental program,

is a dual-phase argon Time Projection Chamber (TPC). A schematic of the DS-50

TPC is shown in Fig. 2.1. The detector contains a 50 kg active volume of liquid argon
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Figure 2.1. An illustration of the DarkSide-50 TPC

defined by a 35.6 cm diameter and 35.6 cm height cylinder. PTFE (Teflon) serves as

the inner cylindrical wall, the bottom surface is defined by a fused silica window, and

the top is defined by a 50 µm thick stainless steel grid with 2 mm pitch hexagonal

mesh. The grid is positioned ∼5 mm below the liquid-gas interface. The gas pocket

is bound by the liquid below, and a fused silica window above.

Two arrays of 19 Hamamatsu model R11065 3” photomultiplier tubes (PMTs)

sit at the outside of the fused silica windows facing the LAr volume. The R11065

PMTs have a quantum efficiency of 34% at 420 nm, are made from low radioactivity

materials, and use a special bialkali photocathode for operation at liquid argon tem-

perature (the PMTs are submerged in liquid argon at -186◦C/87K). The PMTs are

biased by applying a negative voltage to the photocathode and maintaining the anode

at ground. To reduce undesired light emission, the PMTs are operated at reduced

gain: -1200V average bias with unique, trimmed voltages across PMTs. Because of
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the reduced bias, each PMT has an in-Ar amplifier to recover the designed, full-bias

gain.

The top and bottom fused silica windows are coated with a 15 nm thick layer of In-

dium Tin Oxide (ITO), a transparent conductor used to set the potentials in the TPC.

Negative high voltage is applied between the grid and the cathode so that electrons

are drifted upwards towards the gas pocket. Negative voltage is also applied between

the anode and the grid to extract electrons from the liquid and accelerate them across

the gas pocket to produce a secondary signal by electroluminescence. The voltages on

the cathode, anode, and grid can be independently tuned to produce different drift,

extraction, and electroluminescence fields. During normal running, the TPC oper-

ates with -12.7 kV on the cathode, -5.6 kV on the grid, with the anode at ground to

produce a 200 V/cm drift field, 2.8 kV/cm extraction field, and 4.2 kV/cm electrolu-

minescence field. The choice of these particular operating voltages were chosen based

on results from SCENE [69]. The strength of the extraction and electroluminescence

fields is determined by the grid and anode voltages, the height of the gas pocket, and

the dielectric constants of liquid (1.5) and gaseous (∼1) argon. The uniformity of the

vertical drift field is maintained by copper field cage rings held at graded potentials

and located outside of the cylindrical PTFE wall.

A layer of gaseous argon with a thickness of ∼1 cm is maintained at the top of the

TPC. The top fused silica window has a lip that extends 1 cm downwards to form a

diving bell that holds the gas. Liquid argon within the cryostat, but outside of the

sensitive volume, is boiled to produce gas that is delivered to the diving bell. The

gas later exits the diving bell through a bubbler that maintains the gas/liquid height.

The TPC and diving bell are designed specifically for a 1 cm height gas pocket.

All inner PTFE and fused silica surfaces are coated with tetraphenyl butadiene

(TPB), a common wavelength shifter employed in argon experiments. TPB absorbs

the VUV 128 nm scintillation light of LAr and re-emits visible light peaked at 420 nm.
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Figure 2.2. Schematic of the three nested detectors comprising the DarkSide-50
experiment.

On average, TPB emits 1.2 visible photons for every 1 VUV photon absorbed [70].

This unusually high efficiency (> 1) may be due to the fact that argon scintillation

light could likely exceed the ionization potential of TPB, producing electrons with

sufficient energy to excite surrounding TPB molecules [71].

In full, DarkSide-50 consists of three nested detectors; the dual-phase argon TPC,

the Liquid Scintillator Veto (LSV), and the outer Water Cherenkov Detector (WCD),

see Fig. 2.2. The TPC, pictured in Fig. 2.3 is housed within a double-walled stainless

steel cryostat that hangs from rods extending through the LSV to the top of the

WCD. The rods are instrumented to allow for precise leveling of the TPC within the
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Figure 2.3. The DarkSide-50 TPC, pictured from below. The stems of the bottom
array of PMTs are visible with their cold pre-amplifiers.

outer detectors. Fig. 2.4 shows the TPC, housed within its stainless steel cryostat

inside the LSV. The LSV stands on legs within the WCD, as shown in Fig. 2.5.

2.4 Beyond DarkSide-50

Building upon the demonstrable success of the DarkSide-50 experiment, the Dark-

Side collaboration will construct DarkSide-20k [72], a dual-phase argon TPC with an

active volume of 23 t. Similar to DarkSide-50, the experiment will consist of three

nested detectors: the LAr TPC, a spherical Liquid Scintillator Veto (LSV), and a

cylindrical Water Cherenkov Detector (WCD). DarkSide-20k aims to maintain an

“instrumental background free” running condition, as in DarkSide-50, in which less
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Figure 2.4. The cryostat housing the TPC within the LSV

Figure 2.5. The LSV within the WCD
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than 0.1 expected events of non-ν-induced background are expected (in this case in-

strumental background refers to all backgrounds from sources other than coherent

neutrino scatters). The projected sensitivity of DarkSide-20k at a WIMP mass of

1 TeV/c2 (10 TeV/c2) is 1.2 × 10−47 cm2 (1.1 × 10−46 cm2) for a 5 yr run producing

an exposure of 100 t yr free from instrumental background.
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CHAPTER 3

DARKSIDE-50 DATA AND CALIBRATION

3.1 S1, S2, and S3

As shown in the cartoon diagram in Fig. 3.1, a particle interacting with the liquid

argon target produces excitation and ionization. Direct excitation and recombination

produces a primary scintillation signal called S1. Any non-recombined ionization

electrons are drifted under the electric field of the TPC towards the gas pocket,

where they are extracted and accelerated across the gas to produce a secondary,

proportional scintillation signal called S2. In this way, the secondary charge signal is

converted into yet another light signal.

A single-scatter interaction, where a particle enters the detector and scatters off of

a single argon nucleus or atomic electron, produces one S1 and one S2. Single scatter

interactions are generally induced by beta particles (without associated gammas)1,

alpha particles, WIMPS, and neutrons or gammas that scatter only once within

the TPC. Multiple scatter events, where particles like neutrons or gammas scatter

multiple times at different locations within the active volume, generally produce one

S1 and multiple S2s. Multiple scatters occur within nanoseconds of each other and are

therefore below the time resolution of our PMTs, the timescale for scintillation, and

the photon time of flight, creating a combined S1 pulse. The timing of the various

S2 pulses, however, can be well-separated depending on the depth of the various

interactions within the detector, as electrons have to drift up to the gas pocket before

S2 is produced.

1Some fraction of energetic betas will have associated bremsstrahlung.
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Figure 3.1. A cartoon of a particle interacting with the DarkSide-50 TPC
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Figure 3.2. Example S1 waveforms for an electron recoil event (left) and a nuclear
recoil event (right). Both events have similar S1 integrals

S1 pulses have a quick rise time and a two-component exponential tail described

by the singlet and triplet argon lifetimes (6 and 1600 ns respectively). As discussed

in a previous section, different particle types induce different ratios of singlet and

triplet states which will produce different shapes in the tail of the resulting S1 pulse.

Examples of S1 pulses produced by electron recoil and nuclear recoil events are shown

in Fig. 3.2. Note that the electron recoil event has a much more densely populated

tail, despite the two events being of equivalent S1 size (integral).

S2 pulse shape is more complicated than S1. S2 pulse shape depends on the singlet

and triplet lifetimes for argon gas (which differ from the values in liquid and are 11 ns

and 3.2 µs respectively [73]), the transit time of electron clouds across the gas pocket,

and the position-dependent diffusion arising from the drift of electrons through the

LAr. A full analytical description of the S2 pulse shape and an analysis of electron

diffusion can be found in Ref. [74]. Fig. 3.3 shows examples of S2 pulses from different

depth within the TPC to illustrate the effect of diffusion.

Any event of sufficient energy can also produce ‘echo’ pulses. These pulses are not

induced by the original particle interaction, but rather when S1 or S2 induce photo-
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Figure 3.3. Example S2 waveforms for an event with tdrift = 5 µs (left) and
tdrift = 360 µs (right). S2 pulses corresponding to events with higher tdrift values
experience greater electron diffusion and have wider S2s

ionization of the cathode surface. This releases an electron that drifts the full length

of the TPC before producing a small electroluminescence signal in the gas pocket.

These echo pulses are easy to tag because of their small size and characteristic time

separation from their parent pulse. Fig. 3.4 shows an example single scatter event

with an S3 from a 222Rn decay in the bulk (left), and a zoomed waveform for the S3

pulse (right). Note that the amplitude axis has been dramatically re-scaled in the

right panel. In the left panel, the green boxes denote the pulses identified by our

reconstruction software, DarkArt, with the pulse peak location denoted by a pink

vertical line. The S3 pulse has very little structure and is mostly a string of single

photoelectrons. For the rest of this document, echoes originating from S1 will be

referred to as ‘S1-echoes’ and echoes originating from S2 will be referred to as S3.

The experimental setup allows for 3D position reconstruction. The depth of an

event along the axis of the cylindrical volume is given by the time separation between

the S1 and S2 signals. This quantity is called drift time, or tdrift = tS2− tS1 and has

a maximum value of ∼376 µs at the cathode for the standard field configuration. The

transverse position of an event is obtained from the S2 distribution in the top array
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Figure 3.4. Example waveform for an event in DarkSide-50 with S3

of PMTs. Our main means of event discrimination for the WIMP search is through

pulse shape discrimination on S1, which will be described in more detail in Secs. 3.3

and 3.5. We gain additional discrimination power from the relative size of S1 and S2.

The waveform of a full electron recoil event is shown in Fig. 3.5. Note that the size

of S2 relative to S1 is different between Fig. 3.4 (an alpha event) and Fig. 3.5 (an

electron recoil event).

3.2 Outer Detector Veto System

One of the most dangerous backgrounds to direct WIMP detection experiments

are single scatter neutron events in the active volume. These events can be indistin-

guishable from WIMP interactions, even in experiments with excellent discrimination

power between electronic and nuclear recoils. Experiments of sufficient size may define

a fiducial volume that is shielded from neutron backgrounds, but DarkSide-50 is too

small for this approach. Furthermore, 40Ar is very poor for neutron moderation and

capture. Passive shielding can help reduce background events from lower energy cos-

mogenic neutrons, but does not protect against radiogenic neutrons produced within

the shield or high energy cosmogenic neutrons. It is also difficult to conclusively mea-
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Figure 3.5. Example waveform illustrating position reconstruction in DarkSide-50

sure the neutron background left over after application of passive shielding, which

complicates the interpretation of any observed signal through background modeling.

The best method for neutron suppression and tagging is to use an active neutron

veto system. The idea is to surround the experiment, in this case the DarkSide-50

TPC, with an instrumented volume containing a material with a high neutron interac-

tion cross section to maximize the probability that a neutron interacting in the TPC

will produce a coincident signal in the outer volume. This differentiates nuclear recoil

events induced by neutrons from those induced by WIMP interactions, which will not

have any associated signal in the outer volume. Active veto instrumentation allows

for the in situ measurement of neutron backgrounds in the experiment. DarkSide-50

utilizes an active veto system composed of a boron-loaded Liquid Scintillator Veto

(LSV) and a Water Cherenkov Detector (WCD).

The LSV is a 4 m diameter stainless steel sphere that holds 30 tonnes of boron-

loaded liquid scintillator. During underground argon (UAr) running, the boron-loaded

liquid scintillator was composed of pseudocumene (PC, 95% by mass), trimethyl bo-

rate (TMB, 5%), and 2,5-diphenyloxazole (PPO, 1.4 g/L). PC serves as the scintillator

solvent in the liquid cocktail, PPO is used as a wavelength shifter, and TMB is an
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organic molecule with one boron atom. Boron-10 has a very high thermal neutron

capture section of 3840 b. For this TMB concentration, the thermal neutron capture

time is ∼ 22 µs. A different initial configuration was used for the atmospheric argon

(AAr) campaign that included TMB high in 14C, necessitating an update for the UAr

campaign [75]. Neutron capture on TMB either produces an alpha particle and 7Li

in its nuclear ground state (branching ratio, BR 6.4%), or an alpha particle and 7Li

in an excited state (BR 93.6%) producing a gamma ray that may or may not escape

into the cryostat. The alpha particle and 7Li nucleus, however, are always contained

within the scintillator. The inside of the LSV is lined with a reflecting foil called

Lumirror to maximize light collection efficiency. Scintillation photons in the LSV are

detected by an array of 110 Hamamatsu R5912 LRI 8” PMTs. The measured light

yield in the LSV is (0.54 ± 0.04) PE/keVee
2. An inside view of the LSV is shown in

Fig. 2.4.

The WCD is an 11 m diameter, 10 m height cylindrical tank that was originally

part of the Borexino Counting Test Facility. The inner surfaces of the tank are covered

with a laminated Tyvek-polyethylene-Tyvek reflector and the tank is filled with high

purity water. An array of 80 ETL 9351 8” PMTs observe the volume for Cherenkov

photons from muons traversing the volume. The inside of the WCD can be seen in

Fig. 2.5. The WCD serves as passive shielding from gamma rays and neutrons from

radioactivity in the surrounding rock, as well as an active muon veto. The flux of

muons in Hall C within LNGS is 1.2 per m2 per hour [76]. Both the scintillator in

the LSV and water in the WCD, rich in hydrogen, are excellent neutron moderators.

Cosmogenic muons can produce high energy neutrons, making the WCD and its

ability to effectively tag muons an important part of our active veto system.

2Note that this is the light yield for electron recoils, alphas are heavily quenched.
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3.3 TPC Event Reconstruction

DarkSide-50 data can be broken down into basic units called ‘events’, consisting

of raw waveforms from the 38 PMTs in the TPC, the 110 PMTs in the LSV, and

the 80 PMTs in the WCD. The waveforms in the TPC are digitized by CAEN V1720

digitizers with 4 ns sampling and 12-bit resolution on the amplitude axis. The TPC

waveforms are sent in parallel to CAEN V1724 digitizers with 10 ns sampling and

14-bit resolution. The V1720 digitizers are ideal for normal WIMP-search running

where the energies of interest produce S1s of 60 to 460 photoelectrons (PE). The

V1724 digitizers allow for an extension of the dynamic range up to 10,000 PE, which

facilitates calculation of corrections to signals that saturate the V1720s.

The outer detector waveforms are digitized with 0.8 ns sampling and 10-bit reso-

lution. Events are triggered by the TPC, where a majority logic trigger requires a set

number of channel discriminators to fire within a 10 ns window. The AAr campaign

used a majority 3 trigger, UAr running has used a majority 2 trigger. When an event

is triggered in the TPC, a 440 µs window is recorded for the 38 TPC channels3. The

TPC serves as a global trigger to the outer detectors. The TPC and veto system

waveforms are aligned by a GPS receiver that allows for offline confirmation of event-

matching. Following the end of the TPC event window, the data acquisition (DAQ)

system is inhibited from firing again for 810 µs to avoid triggering on the tail of S2

or a possible S3 pulse. This is referred to as the inhibit window.

In offline processing, the recorded raw waveforms are translated into analysis

variables. A full discussion of this process can be found in Ref. [77], but the details

relevant to the analyses presented here are outlined below. The first step of this

process is reconstruction via the DarkArt software, which is comprised of modules

implemented within the Fermilab-developed art framework [78]. DarkArt takes raw

3Generally an S2 pulse falls at -6 µs, with the event window extending from -13.2 µs to 426.8 µs
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waveforms as input and performs a series of reconstructive steps to output a large

C++ class for each event.

First, a converter module produces channel level information (raw waveforms,

channel IDs, sample rate, and whether each channel was saturated) and event-level

information (event ID and trigger time). The raw waveforms of each channel are

then sent to the baseline finder module, where the baseline is computed as a moving

average that separates the waveform into signal and non-signal regions. Under signal

regions the baseline is linearly interpolated. The sum channel module then combines

all channel waveforms into a single event-level summed waveform by scaling each

channel by its single photoelectron response (determined through regular laser cali-

bration runs taken every 12 hours), performing zero suppression (setting any values

on the negative-amplitude waveforms below -0.1 PE to zero), and adding the resulting

waveforms together. The pulse finder module then uses the newly constructed sum

channel waveform to identify pulses by looking for any 2 µs window that has at least

5 PE above the baseline. A more precise start time is determined for each pulse by

locating the sample where the waveform crosses a threshold of 0.3 PE. The end of

the pulse is determined by searching for an absence of signal over a window of 15 µs,

while also searching for possible pileup of pulses defined as a change of 35 PE in the

waveform over a 5 µs window.

After baselines have been found, a sum channel created, and pulses identified,

DarkArt calculates relevant analysis quantities for each pulse. We highlight here the

most important calculated quantities:

• fixed int1: a 7 µs integral from the identified pulse start

• fixed int2: a 30 µs integral from the identified pulse start

• f90: the ratio of the integral over the first 90 ns of the pulse to fixed int1
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It is important to note that at this stage the pulses that have been identified are

generic and have no assignments (S1, S2, S3). Parameters are calculated generally

for all pulses, though some are defined with S1 or S2 in mind. Take as an example,

the fixed integrals; 7 µs is a window of sufficient length to capture an S1 pulse, and

30 µs is sufficient to capture S2. The parameter f90 is specifically intended to be

evaluated for S1. It is of utmost importance to our analysis as it is our main means

of pulse shape discrimination. It has been optimized to efficiently separate particle

types, producing typical values between 0.2 and 0.4 for electron recoils, and 0.5 to

0.8 for nuclear recoils.

DarkArt produces an extensive set of general variables for each identified pulse in

an event. In general, this output is large and not ready for consumption by high-level

analyzers. The second step in data processing produces SLim Analysis Data (SLAD)

files for general consumption. SLAD links DarkArt output with the relevant DarkArt

library files to produce analysis friendly variables with more useable file sizes. SLAD

roughly identifies S1 and S2 pulses. For the WIMP search, we are only interested in

single scatter events satisfying one of two event topologies:

• The event contains exactly 2 pulses (assumed to be S1 and S2)

• The event contains exactly 3 pulses, but the time separation between the 2nd

and 3rd pulses is consistent with S3 (372µs < t[p3] − t[p2] < 400µs; assumed

to be S1, S2, and S3)

In both cases, the first pulse is assumed to be S1 and the second S2. Variables unique

to S1 and S2 in SLAD are then calculated with these assumptions for all events in

SLAD. An estimator of S1 size (S1tot) is calculated to be fixed int1 of an event’s

first pulse and S2 size (S2tot) is fixed int2 of the second pulse (when applicable).

The drift time (tdrift) is calculated as the time difference between the identified

start times of the first and second pulses in an event, respectively. The XY position

50



is determined from the hit pattern of the second pulse (S2) across the top array of

PMTs. This hit pattern is highly non-uniform and can be matched to light response

functions generated from iterative processing of uniformly distributed, high statistics

39Ar decays in AAr data. For further details on the XY reconstruction, see Jason

Brodsky’s thesis: [79].

Corrections are typically applied to S1tot and S2tot to account for variable light

collection efficiency as a function of event position in the TPC. S1tot must be corrected

for z-position as, due to total internal reflection at the liquid-gas interface, events near

the bottom PMTs produce more light than those near the top. Using high statistics

83mKr calibration data we have assembled a light map as a function of the z-position

implied by tdrift. This is used to calculate a tdrift-dependent correction to normalize

S1tot to the yield at the center of the TPC:

tdrift corr factor =

∑5
i=0 pi∑5

i=0 pi ·
(

tdrift
0.5·tdriftmax

)i (3.1)

where [p0, p1, p2, p3, p4, p5] = [0.898, 0.24, -0.389, 0.407, -0.206, 0.0407].

However, as will be discussed in detail in later sections, it is possible for events to

be missing their S2 signals. In this case, an alternative correction is calculated as a

function of the z-position implied by the Top Bottom Asymmetry (TBA) of the S1

signal. TBA is calculated from S1 by:

TBA =
S1top − S1bot

S1tot
(3.2)

where S1top(bot) is the amount of S1 light collected in the top (bottom) PMTs. Note

that no corrections are applied to S1top and S1bot. According to this definition, events

at the grid have TBA ∼ 0 and events at the cathode have TBA ∼ -0.3. This provides
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a coarse sense of event depth in the TPC and an alternative means of z-correction

for events missing S2 signals:

TBA corr factor = 1−
5∑
i=0

pi · TBAi (3.3)

where [p0, p1, p2, p3, p4, p5] = [-0.04, -0.272, 0.79, 1.7, -3.98, -8.51, -2.66]. A more

detailed description of the effect of these corrections on alpha event populations can

be found in Sec. 4.3.

It is possible for the S2 yield in the detector to have a z-dependence due to

impurities in the bulk that capture drifting electrons, thereby reducing the S2 signal.

To estimate this potential dependence, one can define the electron lifetime as the

mean survival probability for electrons to reach the gas pocket. Due to the long

electron lifetime measured in DarkSide-50, > 5 ms [61], it is not necessary to apply a

z-position dependent correction to S2tot. However, the S2 signal has a strong radial

dependence due to an increased electroluminescence field at the center of the TPC

relative to the edges. The cause of this radial dependence (a sagging anode window or

electromechanical deflection of the grid for example) has not been determined. Once

again, using 83mKr data, the S2 signal is normalized to the center of the TPC.

A list of common variables in SLAD that will be used for the analyses discussed

later are:

• nchannels: the number of channels present in data

• baseline found: a boolean for whether the baseline finder module was successful

• inhibit time: the time during which the DAQ was inhibited before the current

trigger

• live time: the time that the DAQ was live (awaiting a trigger after the end of

the inhibit window) before the trigger of the considered event
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• npulses: the number of pulses in the event identified by DarkArt

• S1tot: fixed int1 (7 µs integral) for the first pulse

• S2tot: fixed int2 (30 µs integral) for the second pulse

• S1 start time: start time of the first pulse (S1)

• S2 start time: start time of the second pulse (S2)

• f90 = Integral[S1 start time, S1 start time + 90 ns]
fixed int1

: f90 for the first pulse (S1)

• S2 f90 = Integral[S2 start time, S2 start time + 90 ns]
fixed int2

: f90 for the second pulse (S2)

• tdrift = S2 start time− S1 start time: electron drift time

• TBA: top bottom asymmetry of S1 as defined in Eq. 3.2

• X and Y : transverse position coordinates determined through position recon-

struction using S2

• XY corr factor: a correction factor for the radial dependence of S2 determined

through the XY reconstruction algorithm

• S1corr = S1tot · tdrift corr factor: S1 corrected for z-dependence via tdrift as

described in Eq. 3.1

• S2XY corr = S2tot ·XY corr factor: S2 corrected for radial dependence

• NPE satcorr: saturation-corrected Number of PhotoElectrons (NPE) for all

pulses in an event from V1724 data

Under normal running conditions, data is taken in slave mode; a trigger in the

TPC initiates a global trigger in the LSV and WCD. When the TPC is triggered,

the veto electronics record an acquisition window of sufficient length to cover several

neutron capture times in the LSV. Like for the TPC, the LSV and WCD waveforms
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are reconstructed in DarkArt. However, unlike the TPC, veto data is zero-suppressed.

This means that only waveform data for regions above threshold is saved. Full details

on the veto data reconstruction can be found in Ref. [75].

Reconstructed veto waveforms are used to evaluate two types of integral estima-

tors. The sum waveform is integrated over regions of interest corresponding to prompt

and delayed coincidence signals. The prompt coincidence (a 300 ns window around

the TPC trigger time) targets gammas scattering in both the TPC and LSV or corre-

lated gammas from neutron interactions in the TPC. The delayed coincidence window

is a sliding algorithm that moves a fixed length integration window (500 ns) along a

pre-defined range (end of the prompt region of interest to the end of the waveform) of

the sum waveform. The largest signal is recorded to identify neutron capture signals

in the LSV in delayed coincidence with a neutron event in the TPC. Lastly, the total

integral signals in both the LSV and WCD are evaluated. Muons crossing the veto

system typically produce large signals that can be tagged by a threshold cut on these

integrals.

3.4 Quality and Veto Cuts

There is a standard suite of data quality and veto cuts used for WIMP-search

analyses. These cuts are used in many of the analyses discussed in this thesis and are

outlined below.

First, we define quality cuts that ensure the data considered is suitable for analysis.

We refer to these quality cuts as basic cuts, which include the following conditions:

• nchannels == 38: all TPC channels were present and recorded for the event

• baseline found == TRUE: the baseline finder module in DarkArt successfully

found a baseline on all channels
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• live time + inhibit time > 1.35 ms: the time since the previous event is suffi-

ciently long to avoid triggers on the S2 or S3 of an event hidden in the inhibit

window. It is, of course, impossible to prevent the DAQ from triggering on these

pulses, but we can remove them at the analysis stage. For clarity, see Fig. 3.6 for

an illustration of live time and inhibit time > with respect to event triggers.

We also define a set of veto cuts that remove any events with coincidence signals

in the LSV or WCD. We refer to these as veto cuts, which include the following

conditions:

• veto present: there is a matching veto event for the TPC event, with the correct

timestamp

• veto prompt: there is no signal greater than 1 PE in the LSV within a 300 ns

window around the TPC trigger, rejecting events with a prompt neutron ther-

malization signal

• veto pre prompt: there is no signal greater than 2 PE in the LSV in a 500 ns

window between the start of the acquisition window and the prompt window,

rejecting events with a neutron scatter in the LSV preceding the interaction

that triggered the TPC

• veto delayed: there is no signal greater than 6 PE in the LSV between the

prompt window and the end of the acquisition window, rejecting events with a

delayed neutron capture signal.

• veto muon: there is no signal greater than 2000 PE in the LSV or 400 in the

WCD and more than 2 seconds has elapsed since the last event with veto signals

surpassing those thresholds, removing muons
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Figure 3.6. A timeline detailing the definition of livetime and inhibittime in our
data acquisition scheme

• veto cosmogenic: more than 2 seconds has elapsed since the last event failing

veto muon, removing events within 2 seconds after a muon to avoid cosmogenic

activation of neutrons

For the rest of this thesis, the suite of quality and veto cuts described above will

be referred to as basic cuts and veto cuts respectively. Note that the WIMP-search

analysis utilizes a number of analysis cuts in addition to basic cuts and veto cuts.

3.5 Calibration

Calibration of the TPC is performed through three main methods; laser calibration

of the PMTs, calibration using internal sources diffused in the LAr, and calibration

with external neutron and gamma sources. Note that we do not discuss the calibration

of the LSV and WCD here. A discussion of the calibration of the outer detectors can

be found in Ref. [80].

The PMT response must be calibrated by measuring the average size of a single

photoelectron (SPE) in each individual PMT. To this end, we inject low intensity

pulsed laser light into the TPC, tuned such that each PMT sees, on average, a pho-

toelectron in only ∼5% of the triggers. We integrate over a fixed region of interest

around the expected position of single photoelectrons to build a spectrum. Most of

the time we integrate over noise, which forms the pedestal of the spectrum. The SPEs
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appear as a shoulder on the spectrum, with a mean value giving the SPE size. Laser

calibration runs are taken every 12 hours to monitor PMT stability and account for

any time-variability in the SPE mean.

DarkSide-50 performs internal calibration campaigns using a 83mKr source in order

to measure the light yield at various fields, as well as S1 and S2 yield as a function of

position in the TPC. The source is a sample of 83Rb on a charcoal substrate, which

is placed at a position within the gas recirculation system that can be isolated by

UHV valves. A similar source is described in Ref. [81]. 83Rb decays to 83mKr with

an 86-day half-life and 75% branching ratio. When the source gas is open to the

recirculation system, 83mKr enters the TPC and mixes with the LAr, providing a

uniformly distributed source. Metastable 83mKr undergoes two isomeric transitions,

either emitting 32.1 keV and 9.4 keV gamma rays or internal conversional electrons

with a half-life of 1.83 hours. The interactions of the gamma rays and/or internal

conversion electrons (and any associated X-rays) with LAr occur so close together in

time that they form a simultaneous S1 signal in the DarkSide-50 TPC, followed by

multiple S2s. This composite, simultaneous S1 is not suitable for calibration of f90,

due to the multiple interactions with the LAr. However, 83mKr events are point-life,

making them excellent sources for calibration of S1 and S2 yield as a function of

position. As discussed previously, the position correction to S1 and S2 are derived

through 83mKr campaigns.

Lastly, DarkSide-50 can be calibrated through use of the CALibration Insertion

System (CALIS), outlined in Ref. [80]. CALIS deploys radioactive sources into the

LSV, just outside of the cryostat, to characterize the detector response and detection

efficiency of the TPC and LSV. Calibration can be performed using neutron (AmBe

and AmC) and gamma (57Co, 133Ba, 137Cs, and 22Na) sources. Fig. 3.7 shows data

acquired in DarkSide-50 during a CALIS campaign using an 241AmBe neutron source.
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The x-axis is S1 measured in units of photoelectrons [PE] across the bottom and keVnr

across the top. The y-axis is the unitless discrimination parameter f90.

There are two clear populations in Fig. 3.7; a band at f90 ∼ 0.3 and another at

f90 ∼ 0.7. These bands represent the electron and nuclear recoil bands respectively.

The separation of electron and nuclear recoil events in the f90 parameter is owed

to the different ratio of singlet to triplet argon excimers induced by the different

particle species (discussed in Sec. 2.1). The nuclear recoil band events are neutrons

from the 241AmBe source, the electron recoil band events are associated gammas from

the source that enter the TPC, gammas associated with U and Th-chain activity in

materials, or beta decays from the LAr bulk (39Ar or 85Kr). The mean of the nuclear

recoil band from the 241AmBe calibration campaign data (gray) is plotted in blue.

The measurements of SCENE [69], a dedicated experiment to measure the energy

response of liquid argon to single sited nuclear recoils, are shown in red.

As evidenced by Fig. 3.7, the electron and nuclear recoil bands are separated very

efficiently by the f90 parameter in DarkSide-50 data, especially at high energies.

At very low energies, and consequently low number of photoelectrons, statistical

fluctuations can cause large changes to f90. At low energies the discrimination power

of f90 is reduced; demonstrated by the merging of the gray bands below ∼50 PE in

Fig. 3.7. For the DarkSide-50 WIMP search our S1 region of interest (ROI) of 30 to

200 keVnr, or 60 to 460 PE.
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Figure 3.7. Plot of f90 vs. S1 [PE] (E[keVnr]) for 241AmBe calibration data. Image
from Ref. [80]
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CHAPTER 4

IDENTIFYING ALPHAS IN DARKSIDE-50

4.1 Alpha Radiation

As discussed in Sec. 1.1.4, hydrogen, deuterium, helium, lithium, and beryllium

isotopes were created in the Big Bang. The rest of the elements and isotopes that

we encounter on Earth were created cosmically by the slow or rapid neutron capture

processes in stars and supernovae [82]. In order to be present today, an element or

isotope must have been produced and survived over the lifetime of the Earth (> 4.5

billion years). These are known as primordial nuclides; nuclides found on Earth that

have existed since before the Earth was formed. There are 286 primordial nuclei, 253

of which are stable. Only 4 of the 33 unstable primordial nuclides1 have half-lives

comparable to the estimated age of the universe: 238U, 235U, 232Th, and 40K. Due

to their abundance and half-lives, these four isotopes (and their progeny) dominate

the long-lived backgrounds in rare event searches. The uranium and thorium isotopes

form decay chains; a series of alpha decays, beta decays, and isomeric transitions that

eventually produce stable isotopes of lead.

In beta decay a neutron is converted to a proton in the nucleus and a beta particle

(electron) and anti-electron neutrino are emitted. In this case, the neutrino exits the

detector without interacting and the beta particle induces an electron recoil event.

The beta particle and neutrino share a combined kinetic energy given by (Eν +Eβ) =

1The 33 unstable primordial nuclides are: 128Te, 78Kr, 136Xe, 76Ge, 130Ba, 82Se, 116Cd, 48Ca,
96Zr, 209Bi, 130Te, 150Nd, 100Mo, 151Eu, 180W, 50V, 113Cd, 148Sm, 144Nd, 186Os, 174Hf, 115In, 152Gd,
190Pt, 147Sm, 138La, 87Rb, 187Re, 176Lu, 232Th, 238U, 40K, and 235U.
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Q−Enuc
rec , where Q is the Q-value for the decay and Enuc

rec is the energy imparted to the

recoiling nucleus. For electron recoil events, we measure Eβ. Unfortunately, Eβ can

vary between 0 and Q − Enuc
rec , giving distributed energy spectra rather than peaks.

It is very difficult to tag a specific β-event as originating from a particular isotope

when more than one β-emitter is present, as is always the case.

In contrast, alpha events occur at well-known energies. Alpha decay occurs when

an unstable nucleus ejects an alpha particle; a helium nucleus composed of two neu-

trons and two protons. Alphas have a typical kinetic energy of ∼5 MeV and relatively

short path lengths in materials when compared to electrons. In WIMP direct detec-

tion experiments, in which great care is put into reducing radioactivity in and around

the detector, alpha radiation is still typically present in trace amounts due to natu-

rally occurring isotopes in construction materials and from radon that is circulated

into the system.

Radon is the bane of all low-background experiments. As a noble gas, it is not very

chemically reactive. It diffuses to fill whatever volume it enters, and decays to leave

behind daughter isotopes that can easily plate out on surfaces. In the LAr bulk, alpha

decay events are well-separable from the nuclear recoil signals expected from WIMPs

because of their high energy. The decay of 222Rn produces a 5.5 MeV α-particle,

whereas the energy ROI for the 532-day DarkSide-50 WIMP-search campaign is 30

to 200 keVnr. Also, in LXe and LAr, alphas have a very high S1/S2 ratio.

For radon daughters located on surfaces, however, the picture changes. If the

daughters are implanted within a surface material, whether through the successive

recoils of its parent nuclei or emanation from the material itself, the emitted alpha

particle can be degraded through interactions with the surface material before entering

the LAr. The alpha particle then deposits only a fraction of its energy in the sensitive

volume and can masquerade as a lower energy nuclear recoil, mimicking a WIMP
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Figure 4.1. The uranium-238 series

signal. In DarkSide-50, surface alphas may suffer degradation or complete suppression

of their S2 signals, contributing to their misidentification.

Because degraded surface alphas provide a dangerous background to the WIMP

search, the rates of events from different portions of the common radioactive decay

chains (the uranium and thorium series) must be studied extensively. Alpha contam-

ination levels are also of interest because (alpha, n) reactions are one of the most

dangerous sources of neutron backgrounds, lacking any relation to cosmic muons.

The uranium and thorium decay chains can be found in Figs. 4.1 and 4.2. Below

we highlight several important features in both chains. The quoted Q-values are

taken from the Evaluated Nuclear Structure Data File from the National Nuclear

Data Center, and alpha particle energies (Eα) from Ref. [83].
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Figure 4.2. The thorium-232 series
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The uranium series decays through 222Rn, an isotope of radon that decays with

Q[222Rn] = 5.59 MeV and Eα[222Rn] = 5.49 MeV. The thorium series decays through

220Rn withQ[220Rn] = 6.40 MeV and Eα[220Rn] = 6.29 MeV. As mentioned previously,

radon is an inert noble gas that diffuses to fill volumes, and it does not stick to surfaces.

In a detector like DarkSide-50, one may expect signals from 222(220)Rn to be distributed

throughout the detector volume, and to produce gaussian energy distributions with

a mean of Eα
2. All isotopes after radon in either chain have the potential to be

charged, and if they are charged they will drift in the TPC. These daughter isotopes

are less inert than radon and happily stick to surfaces. We would expect to find

higher concentrations of daughter isotopes on detector surfaces.

Both decay chains contain an alpha-alpha coincidence stemming from the subse-

quent decays of radon and its polonium daughter. In the uranium chain the decay

of 222Rn is followed by the decay of 218Po with a characteristic separation of 268.3 s,

Q[218Po] = 6.11 MeV, and Eα[218Po] = 6.00 MeV. The thorium chain features the

decay of 220Rn followed by the decay of 216Po with a characteristic separation of

0.21 s, Q[216Po] = 6.91 MeV, and Eα[216Po] = 6.78 MeV. If the average time between

subsequent radon decays is large compared to these characteristic times, as it usually

is in low-background experiments, then radon-polonium (RnPo) coincidences can be

reliably tagged. These coincidences can be used to extract invaluable information

about charged daughter fraction, ion mobility, spatial resolution, and the motion of

the target volume fluid.

Both chains contain a bismuth-polonium (BiPo) coincidence; 214Bi → 214Po in

the uranium series and 212Bi → 212Po in the thorium series. Both bismuth isotopes

2If radon is introduced by LAr circulation we expect it to be uniform throughout the volume. If
radon is emanated from surfaces (like the Teflon reflector) it could be more concentrated near such
surfaces. DarkSide-50 may be small enough that emanated radon mixes throughout the volume, but
regardless, it is enough for the radon to be only slightly away from surfaces for full deposition of
energy in LAr.
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beta decay and both polonium isotopes alpha decay. These coincidences produce a

beta and alpha particle with a characteristic time separation of τ214 = 237 µs for the

214BiPo and τ212 = 431 ns for the 212BiPo. Because of the very short time between

decays, these coincidences are often caught within the same data acquisition window,

providing unique event topologies that can be easily tagged. The polonium alpha

decays within either BiPo coincidence represent the highest energy alpha decay in

their respective chains; Q[214Po] = 7.83 MeV and Eα[214Po] = 7.69 MeV for 214Po

and Q[212Po] = 8.96 MeV and Eα[212Po] = 8.78 MeV for 212Po. The 214(212)Po decay

in BiPo coincidences provides an upper limit on the alpha energies in the detector.

Their quick coincidence also makes BiPo events ideal for studying position resolution,

as the two decays should happen in the same position.

The lower uranium chain contains 210Pb, a beta emitter with a 22 year half-life.

Because of this long-lived isotope, it is possible for the lower portion of the decay

chain to be out of secular equilibrium with the higher part3. Secular equilibrium

describes a situation in which the decay rate of a radioactive isotope remains constant

because its production rate is equivalent to its decay rate. This can only occur for

daughter radionuclides with short half-lives compared to their parent radionuclide.

A subsequent isotope to 210Pb is 210Po, an alpha emitter with a half-life of 138 days,

Q[210Po] = 5.41 MeV, and Eα[210Po] = 5.30 MeV. Most low-background experiments

searching for rare events suffer from the presence of 210Po on surfaces. Degraded

alphas from 210Po on/in surface materials form a dangerous WIMP-search background

in need of assessment and specific mitigation.

3Note that in the 238U chain, equilibrium can also be broken at 226Ra, leading to different decay
rates of 238U and 222Rn.
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4.2 Alphas in DarkSide-50

The Linear Energy Transfer (LET) for alpha particles is higher than for fast

electrons by a factor of ∼100. In an experiment like DarkSide-50, alpha particles

produce a higher density of ionized and excited argon species along the particle track

when compared to electrons, leading to stronger and faster recombination. It has

been observed that particles with higher LET produce higher ratios of singlet to

triplet states [84]. The enhancement of the fast component of noble liquid scintillation

under alpha particle excitation is not fully understood, as alpha particles are not pure

nuclear recoil events. Due to their charge they interact with both the argon nucleus

and the surrounding electrons.

In DarkSide-50, alpha particles have nuclear recoil-like f90 values: 0.5 < f90 <

0.85 . Fig. 4.3 shows a plot of TBA and saturation corrected S1 [PE] on the x-axis

versus saturation corrected f90 on the y-axis for 70 live-days of UAr data analyzed

in Ref. [62]. The TBA and saturation corrections will be discussed in detail in the

following section. For now, simply recall that S1 is analogous to energy and f90 is

a parameter that discriminates between different particle types. The events in the

plot pass basic cuts and veto cuts, meaning that they exhibit good data quality and

have no associated signals in the veto system. Otherwise, there are no requirements

placed on particle type, energy, or number of pulses (single scatter, multi scatter, or

otherwise).

There are several populations of note in Fig. 4.3. Electron recoil events form a

horizontal band with f90 ∼ 0.3. As found in Ref. [62], this band is predominantly

populated by bulk 39Ar and 85Kr with rates of (0.73 ± 0.11) mBq/kg and (2.05 ±

0.13) mBq/kg respectively. Nuclear recoil events form a horizontal band with f90 ∼

0.7. Because veto cuts have been applied to the events in this plot, removing neutrons

tagged by veto system, this band represents the alpha population. The slope of the

alpha band is a known effect of saturation and will be discussed in the next section.
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Figure 4.3. Plot of f90 vs. S1 [PE] for events passing basic cuts and veto cuts in
70 live-days of UAr data

An alpha-like S1 is defined as any pulse with 0.5 < f90 < 0.85. To this end we can

define a new analysis cut: alpha f90 = 0.5 < f90 < 0.85.

The population with f90 ∼ 1 and low energy are Cherenkov events, either ra-

diating in the fused silica windows or Teflon reflector, and are much shorter than

scintillation pulses. The population spread across energies with f90 < 0.2 are events

from the very top of the TPC. At such short tdrift values (< 5 µs), DarkArt cannot

resolve S1 and S2 as individual pulses. Instead, S1 + S2 are categorized as a single

pulse which has an artificially low f90 due to the presence of an S2 later in the pulse

window.
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Figure 4.4. S1 spectra for alpha events in 70 live-days of UAr data: uncorrected
(left), saturation corrected (middle), TBA and saturation corrected (right)

4.3 Saturation and TBA corrections to S1

In DarkSide-50 data, the integral of the S1 signal is analogous to event energy.

However, due to the energetic nature of alpha events in the bulk, these S1 pulses

often saturate our digitizers, distorting both the true size of S1 and the value of f90.

Luckily, we take data in parallel with lower gain CAEN V1724 digitizers allowing

us to correct for the effects of saturation. For this correction, we assume that the

saturated portion of the S1 pulse is contained entirely within the prompt region;

the first 90ns. This turns out to be a faulty assumption that leads to only a partial

saturation correction to f90, causing the slope in the alpha band in Fig. 4.3. However,

the correction is sufficient to distinguish these events as nuclear recoils in f90, and

therefore suits our purposes. The assumption has no affect on the correction to S1tot,

which is complete.

Figure 4.4 shows S1 spectra for events passing basic cuts, veto cuts, and alpha f90

with various corrections applied. The left panel shows the uncorrected S1 spectrum

for alpha-like events, analogous to S1tot in Sec. 3.3. There is a large peak around

26000 PE, with additional poorly resolved peaks at higher energy. The middle panel

shows the saturation corrected S1 spectrum for the same events. The energies have

generally increased so that the large peak is now centered around 38000 PE. The right
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panel shows the TBA and saturation corrected S1 spectrum for the same events. The

energy scale is consistent with the middle panel, but resolution of the individual peaks

has improved, particularly those centered around 40000 and 44000 PE.

For the alpha analyses presented here we use a Top Bottom Asymmetry (TBA)

and saturation corrected S1 variable, as shown in the right panel of Fig. 4.4. The

purpose of the TBA correction is to account for variable light collection efficiency as

a function of vertical position. It is typical to use tdrift as the position estimator

for the S1 correction, however, we will see in Sec. 4.6 that many alpha events are

missing their S2 signals (and therefore have no tdrift) necessitating correction by

TBA instead.

For reference, plots of tdrift versus corrected S1 are shown in Figures 4.5 and 4.6

for the TBA and tdrift corrections, respectively. The data filling the plots is the same,

representing all alpha events with valid S2 pulses in a 532 live-day dataset. The two

vertical bands represent alphas from the decay of 222Rn and 218Po (identification of

which is described in the following sections). The bends in the TBA-corrected bands

near the top and bottom of the detector in Fig. 4.5 indicate that the TBA correction

to S1 breaks down very close to either PMT array. This is at least partially due to

the fact that at short distances from the PMTs, TBA becomes heavily dependent

on the XY-position of an event (whether it is directly over a PMT face or over the

Teflon reflector in between). The bands in the tdrift-corrected plot (Fig. 4.6) remain

straight at the top of the detector but bend even more strongly near the cathode.

We can compare the alpha data to the 83mKr electron recoil data from which the

corrections were defined. In Fig. 4.7 it is clear that the 83mKr events form a straight

band throughout the detector after the tdrift-correction has been applied. The dif-

ference between Fig. 4.6 and Fig. 4.7 indicates that alpha events suffer a decrease

in light yield near the cathode that is not accounted for by corrections designed on

electron recoil events. It is possible that electrostatic effects from particle interac-
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Figure 4.5. tdrift versus TBA and saturation-corrected S1 for alpha particles with
S2 in DarkSide-50 data

Figure 4.6. tdrift versus tdrift and saturation-corrected S1 for alpha particles with
S2 in DarkSide-50 data
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Figure 4.7. tdrift versus tdrift and saturation-corrected S1 for 83mKr in DarkSide-
50 calibration data. Image from Ref. [85]
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tions near the cathode, in the form of positive Ar ion screening and charge induced

on the cathode, are more pronounced for more densely ionizing particle species (α

particles). An analytical calculation of the induced charge on a conducting plane (in-

cluding corrections for ion screening and charge induced on the plane) can be found in

Ref. [86]. A study by DarkSide collaborators has shown that the alpha particle light

yield increases with increasing applied external field [87]. This explains why there is

a diminished alpha light yield in the region where additional electrostatic effects may

decrease the field strength.

No significant benefit is gained from use of the tdrift-correction rather than the

TBA-correction for alpha events, and it has the downside of only being applicable

to events with valid S2 pulses. For consistency we consider the TBA-corrected S1

variable for all alphas, whether or not they have S2. For the rest of this thesis we will

refer to TBA and saturation-corrected S1 as ‘fully corrected S1’ in the text.

4.4 BiPo Coincidence Tagging

There are clearly identifiable peaks in the S1 spectrum shown in the right-most

plot in Fig 4.4 that we would like to identify. BiPo coincidences produce events with a

unique topology that can be used to this end. The Po decay in the BiPo coincidence is

the highest energy alpha in either decay chain. This allows us to place an upper limit

on the size of alpha S1s, and to calculate a rough alpha light yield (LY): the number

of S1 photoelectrons produced per keV of energy deposited by an alpha particle in our

detector. We can then identify the remaining peaks in the spectrum and confirm our

assignments based on the relative energy and size of peaks corresponding to isotopes

expected to be in or out of secular equilibrium with each other.

A BiPo coincidence event consists of:

• A beta decay

– Without an associated γ (BR 19.1%): produces S1β + S2β
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– With one or more associated γs (BR 80.9%): produces S1β+γ + S2β +

n · S2γ

• An alpha decay

– Produces S1α + S2α

– Depending on the time separation between β and α decays, S1α and/or

S2α may not be contained within the 440 µs event window

Since we are mostly interested in these events for the energy of the polonium alpha

decay, we can perform a loose search targeting S1β and S1α. However, up until this

point S1 and S2 signals have been very loosely defined by their order in a single scatter

event (S1 is the first pulse, S2 the second). We now want to be able to distinguish

between S1-like and S2-like pulses.

Towards this end, an update was made to the DarkArt module that computes vari-

ables for the pulses in an event. This update introduced the use of a moving average

for improved peak finding, as well as new pulse parameters including microsecond-

length integrals and Full Width at Half Maximum (FWHM). The FWHM parameter

is calculated by finding the first sample on either side of the identified pulse peak that

crosses the half-maximum threshold. This is achieved by first performing a coarse-

grained search on a moving average waveform, and then performing a fine-grained

search on the samples within the crossing point identified during the coarse-grained

search.

FWHM discriminates well between S1 and S2 pulses, which have very different

widths as evidenced by Figs. 3.2 and 3.3. We select a subset of single scatter electron

recoil events in the 70d UAr dataset as a clean test sample, and plot the FWHM

distributions for the first pulse (S1) in green, and the second pulse (S2) in blue. The

results are in Fig. 4.8. The S1 pulses are confined to low FWHM and the S2 pulses

have larger FWHM values peaking around 3.5 µs. A dashed gray line is drawn to
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Figure 4.8. FWHM spectra for S1 (green) and S2 (blue) from a selection of single
scatter electron recoil events

denote a cut for S1-like pulses (FWHM < 0.4 µs). The few S2 pulses with very small

FWHM are cases where a spike is located on top of the maximum of the S2 pulse,

fooling the algorithm into calculating FWHM on the spike. An example waveform

is shown in Fig. 4.9. The origin of these spikes is unknown, but they represent

< 0.0006% of the given ER event sample and are therefore not expected to interfere

with the classification of S1 and S2 for the BiPo search.

We proceed with a loose search for BiPo coincidence events making no require-

ments on S2 pulses. The search criteria are outlined below. Variables with brack-

ets indicate that the named parameter is evaluated for the designated pulse; e.g.

f90satcorr[S11] is saturation-corrected f90 for the first S1-like pulse.

• basic cuts

• veto cuts
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Figure 4.9. Example waveform for an S2 pulse with low FWHM

• has V 1724: a cut requiring that V1724 data is present for each event in order

to correct for saturation

• Two S1-like pulses (with FWHM < 0.4 µs)

• 0.2 < f90satcorr[S11] < 0.4: first S1 is electron recoil-like

• 0.5 < f90satcorr[S12] < 0.85 and S1fc[S12] > 20000 PE: second S2 is alpha-like

We perform a BiPo coincidence search with the requirements stated above in 532 live-

days of UAr data acquired as part of the blind analysis described in Ref. [56]. The

now-unblinded SLAD v3.5.0 dataset is used. There are 816 BiPo candidate events in

532 live-days of data.

The decay time spectrum (tdecay = pulse start time[S12]−pulse start time[S12])

for the candidate BiPo events is shown in Fig. 4.10. It is fit with an exponential

function:

y(t) = Ae−
t
τ , t > 0 (4.1)
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where t is tdecay, A is an amplitude parameter, and τ is the characteristic lifetime of

the decay. The expected τ for the uranium chain BiPo is 237 µs, and 431 ns for the

thorium chain. The fit in Fig. 4.10 results in τ = (216.9± 16.5) µs. This is consistent

at the 1σ-level with the expected value for the uranium chain. The likelihood profile

for the fit with respect to the parameter τ is shown in Fig. 4.11.

There is a noticeable depletion of events in the decay time spectrum above∼250 µs,

where the bin contents consistently fall below the fit function. We speculate that this

may be due to overlap between an S2 pulse from the β or γ with the S1 from the α

decay distorting f90 or FWHM and causing the event to fail our selection criteria.

The probability of an overlap of this kind increases with increasing numbers of S2

pulses and therefore more greatly effects β-decays with an associated γ producing

multi-site interactions. We will see in Fig. 4.15 that a significant fraction of BiPo

coincidences are located on the cathode. The decay of 214Bi is complicated, with

many possible γ energies, the three most abundant of which are 609 keV (46%),

1120 keV (15%), and 1764 keV (15%). The attenuation length of a 600 keV γ in LAr

is ∼10 cm [88]. This corresponds to an affected drift time region of 105 µs around

the cathode, representing the 271 to 376 µs region in the decay time spectrum in Fig.

4.10 where the depletion of events is observed. Since the presence of this depletion

has no effect on the work presented here, a detailed simulation to test this hypothesis

was not performed.

This data is consistent with BiPo coincidences from the uranium chain. In fact,

note the depletion of events at low tdecay in Fig. 4.10. BiPo events from the thorium

chain would have a characteristic time of 431 ns (0.431 µs) and would ideally appear

in the first bin on this plot. Because thorium chain BiPos occur with such short decay

times, they would not be distinguishable by DarkArt as separate pulses, instead being

mistakenly classified as a single ‘pulse’ containing both S1β and S1α. Due to these

combined S1 pulses, thorium chain BiPo coincidences would not pass our search
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Figure 4.10. Decay time spectrum for candidate BiPo coincidence events

Figure 4.11. Negative log likelihood profile for τ from the fit to Fig. 4.10. The green
dashed line represents the expected value of 237 µs
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Figure 4.12. S1 spectrum for the alpha decay in BiPo events

requirements. Given the observed tdecay spectra we consider the 816 candidate BiPo

decay events in the 532 day dataset to be uranium chain BiPos.

The S1 spectrum for the alpha decay in the BiPo events is shown in Fig. 4.12,

where there appears to be a double peak structure. The spectrum has been fit with the

combination of a Gaussian and a Crystal Ball function. The Crystal Ball function is

a probability density function (PDF) used to describe lossy processes in physics, such

as particles traveling through a layer of material. The function consists of a Gaussian

with a power law low-end tail, and is named for the Crystal Ball Collaboration in

which it was first used [89]. The fits shown here use the PDF implementation of the

Crystal Ball function in the Math namespace of ROOT.

The double peak structure and consistency of the lower-energy peak shape with a

Crystal Ball function is an indication that a number of BiPo events may be decaying

on or just below surfaces. In order to confirm this, we need position information,

which requires an S2 pulse that can be correlated with its corresponding S1. In the

case of BiPo coincidences this becomes tricky. If the beta decay has no associated
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gamma, we would expect one S2β and one S2α. The tdrift values for the beta decay

(tβS2 − t
β
S1) and alpha decay (tαS2 − tαS1) should be the same since the decays occur in

the same place. (In principle the Po nucleus recoils after the beta decay, but it travels

microns in LAr, which is below our XY and z-position resolution). In events with

only two S1s and two S2s we can identify the pulses belonging to the beta and alpha

decay by their timing. Unfortunately, gammas can travel long distances in the TPC

between interactions, so the S2 arriving first can be either S2β or S2γ depending on

where (along z) the gamma scattered. Similarly, for certain combinations of initial

position and decay time, a gamma scattering downwards can produce an S2 that

arrives after S2α. When the beta decay has an associated gamma (BR 80.9%) it

becomes impossible to correctly associate a given S2 with the combined S1β+γ or

S1α, or to determine whether the position implied by that S2 corresponds to the

location of the BiPo event (β or α) or one of the gamma interactions.

We can only investigate the position of a subset of the identified BiPo coinci-

dences. Specifically, we will use the position of the beta decay for BiPo events with

no associated gamma. We add a layer to the pulse identification for BiPo candidate

events that searches for S2-like pulses and counts them. Our criteria for S2-like pulses

are that they satisfy FWHM > 0.4, S2 f90 < 0.2, and S2tot > 1000 PE. Definitions of

S2 f90 and S2tot can be found in Sec. 3.3. The second requirement takes advantage

of the fact that S2 pulses have a slower rise and fall than S1, resulting in a low f90.

The requirement on S2tot serves as a very loose lower bound to remove echo pulses.

We then select candidate gamma-less BiPo events with requirements on the number

of S2-like pulses (NS2s) and pulse timing given by:

• (NS2s == 1); S2α fell off the end of the acquisition window and only S2β is

present

• OR (NS2s == 2 AND —(tβS2 − tβS1) - (tαS2 − tαS1)— < 5µs); S2β and S2α are

present with the correct timing indicating events at the same position
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The results of this selection are shown in Figs. 4.13 - 4.15. In the plots, tdrift is

calculated from (tβS2 − tβS1) and XY is evaluated on S2β. 368 of the original 817

events pass the additional S2 cuts. Note that this implies 45% of observed BiPos

have no associated gamma, in contrast to the known branching ratio of 19.1%. It is

not unexpected that the observed number of decays without an associated gamma

is higher than 19.1%. This can be explained by gammas escaping the TPC without

interacting, which is especially likely for decays occurring at the edge of the active

TPC as shown in Fig. 4.15.

Fig. 4.13 shows tdrift versus fully corrected S1 (TBA and saturation-corrected

S1). The projection of this plot onto the x-axis yields the S1 spectrum in Fig. 4.12,

but this 2-dimensional plot allows us to see that the events in the Gaussian, higher-

energy peak are distributed uniformly in tdrift whereas the lower-energy peak is

located almost entirely on the cathode. There are two effects going on here; first, the

alpha decay from a BiPo on/in the cathode may be degraded in energy by traveling

through some surface material, and second, the TBA correction to S1 breaks down

very close to either PMT array, as discussed previously. In any case, Fig. 4.13 confirms

that the double peak structure in the S1α spectrum for BiPo events can be attributed

to a surface population.

Fig. 4.14 shows the XY -position calculated from S2β for BiPo events passing the

additional S2 selection. The BiPo events appear to be uniform in XY . Fig. 4.15 shows

tdrift versus r (calculated in cylindrical coordinates) for the same events. There is

a concentration of events on the cathode, with a subdominant population uniformly

distributed throughout tdrift. In general, this is consistent with what we might

expect from BiPos originating from 222Rn. Radon diffuses throughout the TPC, then

each of its daughters has some probability to be charged (this has been measured by

the EXO-200 collaboration to be 50.3% for 218Po and 76.4% [90]). Charged daughters
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will drift in the electric field of the TPC towards the cathode 4. By the time 222Rn has

decayed to 214Bi, three decays have occurred, each with a probability of producing

charged daughters that can drift over half-lives of 3.1, 26.8, and 19.9 minutes. The

exact fraction of BiPo events that end up on the cathode depends on the charged

daughter fraction for each intermediate decay. This is unique to the medium and has

not yet been measured for liquid argon. However, given the high charged daughter

fraction of xenon, another noble liquid, one can expect the dominant fraction of BiPos

to originate from the cathode.

It is also important to note that each (α, β)-decay emits isotropically and has

a 50% chance of ejecting its radiative particle into the surface material and evading

detection. Loss of either the α, the β, or both would cause the event to fail our search

requirements. From purely geometrical considerations then, we expect to lose ∼75%

of BiPo events coming from surfaces, and therefore the cathode population in Fig. 4.15

is suppressed. We should also acknowledge that we lose BiPo coincidences with long-

lived 214Po. The DarkSide-50 DAQ window is 440 µs in total length, but spans [-13.2,

426.8] µs with the start time of the S1 pulse typically located at -6 µs. This means that

any 214Po daughter that lives longer than 425.8 µs will not be contained within the

window (here we include the 7 µs necessary for f90 of S1α to be properly calculated)

and the event will not pass the BiPo requirements. The probability for a 214Po decay

to fall off the end of the event window is P = 1 − 1
237µs

∫ 425.8µs

0
e
−t

237µs = 16.6%. This

is all to illustrate that we observe only a subset of the BiPo coincidences actually

occurring within the TPC.

4Note that here we assume the same sign of the daughter ions as observed in EXO-200, which is
confirmed for DarkSide-50 in Chapter 5.
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Figure 4.13. Plot of tdrift versus alpha energy for the 368 out of 817 BiPo events
passing the S2 selection

Figure 4.14. Plot of XY position for the 368 out of 817 BiPo events passing the S2
selection
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Figure 4.15. Plot of tdrift versus r for the 368 out of 817 BiPo events passing the
S2 selection

4.5 Isotope Identification

Now that we have confidently identified the 214Po decay from the uranium chain

we can estimate an alpha light yield (LY α
LAr):

LY α
LAr =

S1obsmean
Q

(4.2)

where S1obsmean of the 214Po decay can be extracted from a Gaussian fit to the higher-

energy peak in Fig. 4.12. The selection of the higher peak utilizes specifically those

events with full energy deposition in the bulk. Q is the total energy released in the

214Po decay: 7.83 MeV 5. The LY α
LAr calculated from 214Po decays in DarkSide-50 is

therefore (7.27 ± 0.01) PE/keV.

5There is a subtlety here as to whether to calculate LY αLAr using only the energy of the α-particle
or including the energy of the recoiling daughter nucleus. Both the α-recoil and daughter-recoil have
their own specific recombination and scintillation output. Here we use the full energy of the decay
to measure LY αLAr, with individual scintillation yields and quenching for both the α and daughter
nucleus encapsulated in the final number. Note that this definition is appropriate for alpha decays
occurring within the LAr bulk and may not be consistent with decays from surfaces where the
daughter nucleus may be lost to the surface material.
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Using this alpha light yield we can identify the remaining peaks in the overall

DarkSide-50 alpha spectrum using their relative energy spacing and size. Fig. 4.16

shows the S1 spectrum for all alpha events (passing basic cuts, veto cuts, has V 1724,

and alpha f90) in 532 live-days of UAr data. S1α from 214Po decays within identified

BiPo coincidences have been added into the plot, as those events initially fail the typ-

ical alpha selection since their first pulse is an electron recoil-like S1. Lines have been

overlaid to represent the expected mean S1 values for various alpha emitting isotopes

in the uranium (green) and thorium (blue) series based on the LY α
LAr estimated from

214Po.

If thorium chain alphas were present in DarkSide-50 we would expect the presence

of 220Rn and its daughter 216Po. However, in the general vicinity of the blue line

positions corresponding to the relevant isotopes in Fig. 4.16 there are no populations

in the data. The higher chain isotopes (232Th, 228Th, and 224Ra) are missing as well.

Chris Stanford, in his PhD thesis work at Princeton University, performed a search

for the 212BiPo and the 220Rn/216Po coincidence from the thorium chain. He found

the rate of 220Rn in DarkSide-50 to be (0.037 ± 0.0004) µBq kg−1, ∼50 times lower

than the rate of 222Rn from the uranium chain [91].

The rough value of LY α
LAr taken from the upper peak in the S1 spectrum of 214Po

appears to have been an overestimation, or the assumption that LY α
LAr is constant

with energy is false. This will be discussed further in Sec. 4.7. With this in mind,

the most probable identifications are as follows: the Gaussian peak at ∼44000 PE

corresponds to 218Po, the Gaussian peak at ∼40000 PE corresponds to 222Rn, and the

large Crystal Ball peak corresponds to 210Po. Fig 4.17 shows the same S1 spectrum

with fits to the various peaks. The left three peaks are fit with a combination of

two Gaussians and a Crystal Ball function. The population of 214Po alphas is well-

separated in energy from the rest and is fit with the Gaussian plus Crystal Ball

function used in Fig. 4.12.
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Recall once again that we expect radon to present in the LAr volume, allowing full

deposition of its energy in the detection medium. If its daughter, 218Po, is positively

charged, it will drift toward the cathode with a non-zero probability of reaching the

cathode surface. Those decays will either occur in the bulk or just on the surface of

the cathode material. They are therefore likely to fully deposit their energy, unless

they eject into the surface material in which case they are lost completely. The

222Rn and 218Po decays are separated by just three minutes, so we expect these two

isotopes to be in secular equilibrium. In Fig. 4.17, the 222Rn and 218Po peaks are

both Gaussian and roughly consistent in size, as expected. The slight depletion in

the 218Po population relative to 222Rn can be explained by the loss of events at the

cathode. This will be covered in more detail in Chapter 5.

The most interesting feature of the alpha S1 spectrum in Fig. 4.17 is the large,

degraded 210Po peak. Note that this peak deviates more than the others from the

predicted isotope position denoted by the lines in Fig. 4.16. This population is similar

to the lower-energy Crystal Ball peak for 214Po in Fig. 4.12. This is an indication

that all, or nearly all, of the 210Po present in DarkSide-50 experiences some degree

of degradation. The size of the 210Po peak is much larger than the 222Rn and 216Po

peaks, which tells us that 210Po is out of secular equilibrium with the upper part of

the uranium chain. This is not unexpected given that an intermediate isotope, 210Pb,

has a 22-year half-life. As we will see in Sec. 4.8, 210Po is in secular equilibrium with

210Pb and is likely being fed from lead contamination in materials 6. The degraded

tail of the 210Po population extends beyond the left edge of the S1 spectrum plot. In

fact, it extends down to the region of interest for the WIMP search (S1 < 460 PE).

The behavior of 210Po in this low energy region will be discussed in the following

sections, with the bulk of the discussion in Chapter 7.

6Note that 210Pb contamination is different from chemical lead contamination and is typical for
detector materials exposed to air.
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Figure 4.16. S1 spectrum for all alpha-like events in 532 live-days of data with
overlaid isotope lines
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Figure 4.17. S1 spectrum for all alpha-like events in 532 live-days of data with
overlaid fits
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4.6 Alpha S2s

So far, with the exception of BiPo event positions, our alpha discussion has been

limited to the characteristics of alpha-like S1 pulses. As it turns out, alpha S2s are a

complicated subject. Naively making the same assumptions about pulse ordering as

for the standard dark matter analysis (S1 is the first pulse, S2 is the second) would

result in misleading spectra of S2 size and tdrift.

This is illustrated well in Fig. 4.18, taken from Chris Stanford’s thesis [91]. The

population at Log10(S2/S1) = 0 and extending throughout tdrift represents valid

S2 pulses. Alpha events in DarkSide-50 appear to have S2/S1 ∼ 1. The vertical

red band at tdrift ∼ 376 µs corresponds to S1 echoes; single electrons liberated

from the cathode by photoionization. These pulses are very small in size, giving

low Log10(S2/S1) values. S1 echoes always occur at maximum tdrift after S1. The

population with tdrift greater than the full drift (> 376 µs) are S2 echoes, or S3s.

Due to the length of the DAQ event window (440 µs duration extending from [-13.2 µs,

426.8 µs]), only S3 pulses from S2s with tdrift < 64µs are contained. Lastly, there

is a population of events at Log10(S2/S1) ∼ -3 extending from 25 µs to 370 µs in

tdrift. These cannot be echoes because they have the incorrect timing relative to

other pulses in the event. Instead, these pulses fall into two categories. The first

category contains pulses incorrectly identified in clusters of photoelectrons in the tail

of S1, see Fig. 4.19 for an example. The second category appears to be genuine S2

pulses of around 30 PE in size, possibly from photoionization of a single electron

within the bulk argon itself. For a more detailed discussion, see Ref. [91].

If we want to identify valid S2 pulses within alpha events for the purposes of

position reconstruction, we cannot identify them by pulse ordering alone. Instead,

we develop a more rigorous set of criteria for an alpha S2 pulse:

• S2tot > 2000 PE: we expect S2 to be roughly as large as S1 (typically >

350000 PE), but this size cut is kept loose to accommodate events from the
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Figure 4.18. Plot of log10(S2/S1) versus tdrift for the pulses following S1 in 222Rn
and 218Po events taken from Ref. [91]. Refer to the text for a full description of
populations
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Figure 4.19. Example waveform of an alpha event where a cluster of PE in the S1
tail was identified as a pulse. Note that the waveform amplitude has been inverted in
order to show the pulses on a log scale. The green boxes denote the identified pulses
(in order): S1, PE cluster in S1 tail, S2, S1 echo
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Figure 4.20. Plot of S1 spectra for all alpha events (black), alpha events with S2
(blue), and alpha events without S2 (red)

degraded tail of the 210Po distribution or events occurring in peripheral regions

with incomplete charge collection

• S2 f90 < 0.2: the pulse must have roughly the right prompt shape. Echoes have

little structure and clusters of photoelectrons from the tails of S1 are random

• −0.65 < Log10(S2/S1) < 0.3: informed by Fig, 4.18. Here S2 is S2tot and S1 is

fully corrected S1

The algorithm scans each pulse in a candidate alpha event and stops once an S2-like

pulse has been identified. Events with a pulse satisfying these criteria have valid S2 =

TRUE and the index of the S2 pulse is saved. Fig. 4.20 shows the alpha S2 spectrum

color coded by the presence of S2. We include only the alphas which trigger the

detector. The 214Po decays from within the BiPo coincidences are not included.
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The blue spectrum represents alpha events that have passed valid S2 while the

red spectrum represents events that fail. The x-axis ends at 600 PE on the left rather

than zero. This is the beginning of the WIMP search region of interest and the upper

edge of the blinding box used for the 532-day analysis discussed in Chapter 7. This

truncated x-axis is used intentionally to illustrate that degraded surface alphas were

a cause for concern in the blind WIMP search analysis.

The 222Rn population is entirely composed of events with S2. The 218Po is pre-

dominantly events with S2, with a small population without S2. As mentioned before,

the daughters of radon can be charged and can plate out on surfaces. DarkSide-50

experiences reduced charge collection efficiency for events on or near surfaces. For

events close to the cylindrical Teflon reflector, this has been termed the ‘Wall Ef-

fect’; S2 size decreases for events with increasing closeness to the walls eventually

disappearing entirely. This effect is discussed in greater detail in Ref. [91].

The most striking feature in Fig. 4.20 is the 210Po peak, which is heavily suppressed

in the spectrum where S2 is required (blue). The population of 210Po with S2 indicates

that some 210Po may be sitting close to the wall/cathode-LAr interface. Alternately,

the large number of 210Po events without S2 likely have some distribution of depths

leading to more significant degradation and the lack of an S2 signal. In this case a

significant portion of the event’s scintillation is coming from TPB itself, rather than

LAr.

The wavelength shifter TPB, which coats all inner surfaces in DarkSide-50, is

known to scintillate under direct alpha particle excitation [71,91–93]. The light yield

from alpha excitation of TPB depends on the exact detector geometry, but LY α
TPB <

LY α
LAr. Alphas from the decay of sub-surface 210Po may deposit the majority of

their energy in TPB, leaving an insufficient amount of energy to produce driftable

ionization in the LAr. This is a potential alternative mechanism for the loss of S2,

particularly for events on the cathode that are not subject to the wall effect.
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The low energy tail in the spectrum of 210Po events with S2 becomes very sparse

by the left edge of the plot (600 PE). On the other hand, the low energy tail in the

spectrum of 210Po events without S2 has a heavily populated tail that actually turns

upwards in amplitude below ∼6000 PE, amounting to huge numbers of events at

600 PE. DarkSide-50 runs as a background free experiment, meaning that we define a

signal region and analysis cuts such that we have < 0.1 expected background events

from all sources over the entire exposure. Any source of background that can produce

a nuclear recoil-like signal in our S1 ROI is of serious concern to the WIMP search.

The danger posed by 210Po comes in two flavors:

• Case 1: degraded 210Po events that have an S2; events from the blue spectrum

falling below 600 PE (below the x-axis range in Fig. 4.20)

• Case 2: degraded 210Po events that are missing S2, but occur in random coin-

cidence with something that looks like S2; events from the red spectrum falling

below 600 PE + a random other pulse

Case 1 is explored extensively in Ref. [91]. A brief summary of Case 1 and extensive

discussion of Case 2 can be found in Chapter 7.

4.7 Measuring the Alpha Light Yield (LY α
LAr)

We previously made a rough estimation of the LY α
LAr using a suboptimal sample

of 214Po in order to identify the remaining isotope peaks in an alpha S1 spectrum.

We repeat the procedure now on a cleaner sample of data. For this we select events

that fully deposit their energy in the liquid argon target.

In addition to the simple alpha requirements (basic cuts, veto cuts, has V 1724,

and alpha f90) we now require alpha events with valid S2. We also require the alpha

event position to reconstruct within the bulk, in this case: 10 µs < tdrift < 370 µs

and r < 15.8 cm. This represents a cut of 2 cm in radius, 0.93 cm from the liquid-gas
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Figure 4.21. Plot of S1 spectrum for alpha events with valid S2 in the bulk

interface, and 0.47 cm from the cathode. The extra distance cut from the top of the

detector is to ensure that S1 and S2 are well-separated.

Fig. 4.21 shows the S1 spectrum for alpha events passing the selection. Requiring

a valid S2 that reconstructs in the bulk removes the 210Po population, leaving behind

Gaussian peaks for 222Rn and 218Po. We fit the two peaks with a double gaussian

function, yielding a 222Rn mean S1 of (40009 ± 9) PE and a 218Po mean S1 of (43924

± 11) PE. The 214Po mean S1 is extracted from the upper Gaussian peak in the 214Po

distribution from Fig. 4.12. Note that by using the mean of the upper Gaussian peak

we are selecting 214Po events from the bulk, an assumption reinforced by the data

shown in Fig. 4.13. The three calculated light yields are plotted as a function of decay

energy in Fig. 4.22, and summarized in Tab. 4.1. The error bars on the points in Fig.

4.22 are from the fit error on the Gaussian mean. The light yield clearly increases as

a function of energy. With only three data points, fit results are not meaningful, but

a dashed gray line corresponding to a linear fit to the data is shown to guide the eye.
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Isotope LY α
LAr [PE/keV]

222Rn 7.157 ± 0.002
218Po 7.189 ± 0.002
214Po 7.270 ± 0.010

Table 4.1. Table of measured values of LY α
LAr for selected alpha isotopes in DarkSide-

50

Figure 4.22. LY α
LAr as a function of energy measured from tagged isotopes in

DarkSide-50 data
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We would like to estimate systematic biases in the evaluation of the observed trend.

We know that alpha events often saturate the digitizers, which we correct using V1724

data. This correction should be accurate and complete. It is also possible for the alpha

events to saturate the PMTs, degrading the observed energy in a manner that cannot

be corrected with V1724 data. However, this would cause more energetic alphas to

suffer more energy loss from PMT saturation, and therefore create a trend opposite

that which is observed. We currently do not have the means to correct possible PMT

saturation in the data, but we should keep in mind that PMT saturation may dampen

any nonlinear alpha light yield effect present in LAr.

Spatial effects are the most likely to affect our light yield measurement. We have

already shown that the TBA correction to S1 is not perfect for alphas (see Fig. 4.5).

In order to estimate the dependence of the alpha light yield on position, we take

several slices of 222Rn and 218Po events (214Po has insufficient statistics) in tdrift and

r and evaluate LY α
LAr for each slice. Keeping a fixed slice of r < 15.8 cm, the tdrift

slices are:

• 75 µs < tdrift < 125 µs

• 125 µs < tdrift < 175 µs

• 175 µs < tdrift < 225 µs

• 225 µs < tdrift < 275 µs

• 275 µs < tdrift < 325 µs

and keeping a fixed slice of 150 µs < tdrift < 250 µs, the r slices are:

• 0 cm < r < 7 cm

• 7 cm < r < 10 cm

• 10 cm < r < 13 cm
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Figure 4.23. LY α
LAr as a function of r with 150 µs < tdrift < 250 µs fixed (left)

and as a function tdrift with r < 15.8 cm fixed (right), evaluated with 222Rn events

• 13 cm < r < 15 cm

• 15 cm < r < 19 cm

The results are shown for 222Rn in Fig. 4.23 and for 218Po in Fig. 4.24. For both

isotopes, LY α
LAr increases towards the outer edges of the detector. For 222Rn in a

central bulk region of r < 13 cm and 150 µs < tdrift < 250 µs the spatial variations

are 0.4% in r, 0.2% in tdrift, and 0.48% combined. For 218Po in the same region the

spatial variations are 0.2% in r, 0.2% in tdrift, and 0.28% combined. Variations in

the central region are considered to be a jitter on the light yield and are added in

quadrature.

We therefore utilize the restricted bulk selection of r < 13 cm and 150 µs <

tdrift < 250 µs for an updated light yield calculation. Table 4.1 summarizes the

values of LY α
LAr calculated for the restricted bulk 222Rn and 218Po, and 214Po peaks.

Fig. 4.25 shows the fits to the 222Rn and 218Po peaks in the reduced bulk selection,

and Fig. 4.26 shows the fit to the 214Po peak. The three calculated light yields are

plotted as a function of decay energy in Fig. 4.27 and summarized in Tab. 4.2. The

error bars on the points in Fig. 4.27 are from the fit error on the Gaussian mean.

A straight line has been fit to the data points with a slope of (0.048 ± 0.005). One
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Figure 4.24. LY α
LAr as a function of r with 150 µs < tdrift < 250 µs fixed (left)

and as a function tdrift with r <15.8 cm fixed (right), evaluated with 218Po events

Isotope LY α
LAr [PE/keV]

222Rn 7.141 ± 0.003
218Po 7.165 ± 0.003
214Po 7.250 ± 0.020

Table 4.2. Table of measured values of LY α
LAr for selected alpha isotopes in a re-

stricted bulk selection in DarkSide-50

may notice that the light yield has decreased slightly for each point and the slope

of the fitted line is slightly less in restricted bulk selection. This change is expected.

Figures 4.23 and 4.24 show that events closer to detector surfaces have an increased

light yield, and the two more energetic isotopes (218Po and 214Po) have increasing

fractions of events near the cathode due to ion drift (discussed in Chapter 5).

The light yield trend remains in the restricted bulk selection, in fact, it appears to

be more consistent with a linear trend. The difference between the two most extreme

points represents an alpha light yield variation of (1.5 ± 0.2)%. The spatial variations

in the restricted bulk region are no more than 0.48%. The nonlinearity of the alpha

light yield appears to be a real effect in LAr, with a significance of ∼3σ.

Light yield scales with the energy of a charged particle. However, the observed

light output of a scintillator at a given particle energy decreases with increasing ion-
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Figure 4.25. Plot of S1 spectrum for alpha events with valid S2 in the restricted
bulk

Figure 4.26. Plot of S1 spectrum for 214Po events from tagged BiPo coincidences
with valid S2 in the restricted bulk
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Figure 4.27. LY α
LAr as a function of energy measured from tagged isotopes in a

restricted bulk selection in DarkSide-50 data
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ization density due to quenching. The energy dependence of the quenched scintillation

light can be described by Birks law [94]:

LY (Ei) =

∫ E′=Ei

E′=0

SdE ′

1 + kB · (−dE
dx

(E ′))
(4.3)

where Ei is the initial energy of the particle, E ′ is the kinetic energy of the particle,

dE/dx is the specific energy loss of the particle, kB is Birks constant (dependent on

the material), and S is a constant. For fast electrons, which have a small dE/dx,

Eq. 4.3 approximates to LYe(E0) = S · E0. However, alphas have large dE/dx,

especially at the end of their track (Bragg peak occurs ∼ 1 MeV in LAr). The energy

lost to this most densely ionized region is more heavily quenched than the energy

lost along the rest of the track. Thus, it stands to reason that alpha particles with

higher energies expend more energy before their Bragg peak, therefore suffering less

quenching and producing more scintillation light.

For the purposes of the 210Po simulations carried out in Chapter 6, we use LY α
LAr

= (7.157 ± 0.002) PE/keV calculated from the neighboring 222Rn peak in the gen-

eral selection. It is important to note that light yield, which differs from the light

output by a scintillator, is a function of the experimental setup. It is also a function

of the interacting particle type, and therefore different between alpha particles and

electron recoil events. For comparison, the S1 light yield for electron recoil events

was measured to be (7.0 ± 0.3) PE/keV by fitting a 83mKr calibration peak and the

39Ar spectrum endpoint in Ref. [61].

4.8 Alpha Rates

We can now examine the decay rates of identified alpha-emitting isotopes in

DarkSide-50. First, we will define some basic terminology; ‘real-days’ refers to actual

time elapsed, and ‘live-days’ refers to the total amount of time that DarkSide-50 was
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live and acquiring data (excluding time for calibration or laser runs, inhibit windows,

and dead time). A livetime-normalized decay rate is calculated by grouping data ac-

quired in intervals of 20 real-days and dividing the number of observed decays by the

total live-days within the interval. That rate is plotted against the real-days elapsed

since the start of the dataset (t since start [d]).

The variable t since start is calculated by extracting the UNIX time recorded for

the start of each run from an SQL database, subtracting the UNIX time of the first

run in the dataset, and summing livetime for each consecutive event within that run.

So, for eventi in runi of a dataset, t since start is calculated for each event as:

t since start[eventi] = (tUNIX [runi]− tUNIX [run0]) +
i∑

n=0

live time[eventn] (4.4)

Individual isotopes are selected by the following requirements:

• is alpha = basic cuts and veto cuts and has V 1724 and alpha f90

• is Rn222 = is alpha and 39210 PE < S1 < 41600 PE

• is Po218 = is alpha and 41600 PE < S1 < 45500 PE

• is Po210 = is alpha and 600 PE < S1 < 39210 PE

• is Po214 = contained within a tagged BiPo coincidence

where S1 is fully corrected S1. The energy demarcations are chosen by eye to best

separate the S1 spectrum peaks. The lower bound of the 210Po population represents

the top edge of the blinding box used for the 532 live-day WIMP search. The 210Po

population should be subjected to increased skepticism compared to the populations

of 222Rn, 218Po, and 214Po, which have been tagged and selected by reliable methods.

210Po near the peak (∼ 39000 PE) are easily attributable to degraded 210Po. How-

ever, as we move lower in energy (< 20000 PE) we have less conclusive arguments for
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why the low-energy nuclear recoil events must belong to 210Po and not to any other

nuclear recoil-like events in areas of poor charge and light collection efficiency. For

now, we classify all low-energy nuclear recoil decays as belonging to the 210Po distri-

bution, with only the [0, 600] PE region removed. This S1 region will be discussed in

detail in Chapter 7.

Fig. 4.28 shows the overall rate of observed 222Rn decays as a function of time

since the start of the dataset. The decay rate appears constant, implying that the

radon is most likely circulated into the system. A flat fit to the data yields a decay

rate of (7.62 ± 0.12) decays per day, or (1.90 ± 0.04) µBq/kg calculated using (46.4

± 0.7) kg of active mass in DarkSide-50 [61]. This rate is denoted on the plot by a

gray dashed line. The rate of observed 222Rn decays may exhibit a slight decline over

the 800 real-day time period. An exponential fit to the data yields a tau of (8.35 ±

1.79) years. This is significantly shorter than the half-life of radon’s parent isotope

226Ra; 1600 years. Perhaps the decrease can be explained by the action of the radon

abatement system. For the purposes of our calculations, the rate is approximated as

constant over the length of our dataset.

Fig. 4.29 shows the overall rate of observed 218Po decays as a function of time

since the start of the dataset. As we would expect, the decay rate appears constant,

consistent with 218Po being in secular equilibrium with 222Rn. A flat fit to the data

yields a decay rate of (6.61 ± 0.11) decays per day, or (1.65 ± 0.04) µBq/kg. This

rate is denoted on the plot by a gray dashed line. The fact that the observed decay

rate for 218Po is lower than for 222Rn can be explained by loss of 218Po ions at the

cathode.

Fig. 4.30 shows the overall rate of observed 214Po decays as a function of time

since the start of the dataset. Again, the constant decay rate implies that 214Po is in

secular equilibrium with the preceding isotopes. A flat fit to the data yields a decay

rate of (1.46 ± 0.05) decays per day, or (0.34 ± 0.01) µBq/kg, denoted on the plot by
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Figure 4.28. Livetime-normalized rate of observed 222Rn decays as a function of the
time since the start of the 532 live-day dataset. The 222Rn activity is consistent with
constant

Figure 4.29. Livetime-normalized rate of observed 218Po decays as a function of the
time since the start of the 532 live-day dataset
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Figure 4.30. Livetime-normalized rate of observed 214Po decays as a function of the
time since the start of the 532 live-day dataset

a gray dashed line. Again, the decrease in rate of 214Po as compared to the preceding

isotopes is consistent with the successive loss of charged daughters at the cathode.

Figs. 4.31 and 4.32 show the overall rate of observed 210Po decays with and without

S2 as a function of time since the start of the dataset. A flat fit to the data yields

a decay rate of (4.96 ± 0.10) decays per day or (1.15 ± 0.03) µBq/kg for 210Po with

S2, and (185.52 ± 0.59) decays per day or (42.94 ± 0.66) µBq/kg without S2. These

rates are denoted by gray dashed lines. The rate of 210Po, both with and without

S2, is larger than the rate of 214Po. However, both rates are constant over the 800

real-day period, which is almost 6 times the half-life of 210Po. This tells us that 210Po

is in secular equilibrium with 210Pb but out of equilibrium with the earlier part of the

uranium chain. Unfortunately, due to the long half-lives of 210Pb and 210Po, the low

energy nuclear recoil background from degraded 210Po alphas will remain constant

over the life of the experiment.
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Figure 4.31. Livetime-normalized rate of observed 210Po decays with S2 as a function
of the time since the start of the 532 live-day dataset

Figure 4.32. Livetime-normalized rate of observed 210Po decays without S2 as a
function of the time since the start of the 532 live-day dataset
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Isotope Observed Rate [decays/day] Observed Rate [µBq/kg]
222Rn 7.62 ± 0.12 1.90 ± 0.04
218Po 6.61 ± 0.11 1.65 ± 0.04
214Po 1.46 ± 0.05 0.34 ± 0.01

210Po (with S2) 4.96 ± 0.10 –
210Po (without S2) 185.52 ± 0.59 –

Table 4.3. Table of observed alpha decay rates in 532 live-days of DarkSide-50 data.
The 210Po rate is not quoted in Bq/kg because it is a surface contaminant.

The rates calculated in this section are summarized in Tab. 4.3. Because 210Po

is a surface contaminant, as we will see in Sec. 4.9, it is not appropriate to quote its

rate in units of Bq/kg. One can scale the observed rate [decays/day] by the various

surface areas of the inner TPC. However, given the incomplete position reconstruction

information for most 210Po events it is difficult to say what surfaces are affected. Also

note that, as discussed above, the events included in the population of 210Po without

S2 cannot all be conclusively identified as 210Po decays and may include other nuclear-

recoil-like events from areas of poor charge and light collection efficiency. The rates

in this table do not reflect absolute decay rates or contamination levels, they are

the observed rates of decay. No effort has been made to correct for detection and

analysis efficiencies. The observed alpha rates in DarkSide-50 are lower than for the

competing xenon-based experiments. LUX has an observed rate of ∼ 72 µBq/kg of

222Rn [95], and XENON100 experiences a base rate of ∼ 40 µBq/kg due to radon

emanation from detector components [96].

4.9 Alpha Positions

We can also examine the reconstructed position of alpha events. We once again

separate the alpha populations by isotope using the collections of cuts described

above for is Rn222, is Po218, is Po214, and is Po210. The difference now is that

we require a valid S2 for position reconstruction. Note that the position of BiPo
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Figure 4.33. XY position of 222Rn events with a valid S2 in the 532 live-day dataset

events, and therefore 214Po events, has already been discussed in Sec. 4.4 and will not

be repeated here.

Of the original 4231 222Rn events in the 532 live-day dataset, 83% have a valid

S2 pulse. However, it is likely that the majority of the ‘222Rn’ events removed by the

application of valid S2 are actually 210Po events contaminating our 222Rn selection.

(Recall that we made a very simple, one-dimensional cut in energy to select the isotope

populations). The reconstructed XY position of 222Rn events passing valid S2 can

be found in Fig. 4.33, and tdrift versus r in Fig. 4.34. The events appear uniform

in XY. They also appear relatively uniform in tdrift, given that the population at

the cathode is likely to be due to contamination from the population of 210Po events

with S2. Note that the x-axis of this plot represents r =
√
x2 + y2, and the seeming

increase in density of points to the right of the plot does not necessarily represent an

increase in events at larger radius.
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Figure 4.34. tdrift versus r for 222Rn events with a valid S2 in the 532 live-day
dataset

Of the original 3617 218Po events in the 532 live-day dataset, 84% have a valid S2

pulse. The 218Po population is better separated from the other isotopes in energy, so

the fraction of 218Po events with S2 pulses is likely to be accurate. The reconstructed

XY position of 218Po events passing valid S2 can be found in Fig. 4.35, and tdrift

versus r in Fig. 4.36. The events appear uniform in XY. They are also uniform in

tdrift, apart from a large population on the cathode. The movement of 218Po towards

the cathode will be discussed in detail in Chapter 5.

The population of 210Po events is greatly diminished by the requirement of a valid

S2 pulse, leaving ∼3% of events in the energy range of 600 PE < S1 < 39210 PE.

The reconstructed XY position of the remaining 210Po events is shown in Fig. 4.37,

and tdrift versus r in Fig. 4.38. The events are uniform in XY, with the exception of

a hot spot at (-15, -9) that corresponds to the XY position of PMT 2 in the bottom

array and PMT 19 in the top array.
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Figure 4.35. XY position of 218Po events with a valid S2 in the 532 live-day dataset

Figure 4.36. tdrift versus r for 218Po events with a valid S2 in the 532 live-day
dataset
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This is the known location of a ‘hole’ that developed after UAr filling, which

presented as a depletion of events in a circle centered on (-15, -9). The hole is

thought to be caused by a field distortion near the cathode due to the LAr inlet hole

in the field cage. Events occurring in this region of the TPC are normal, however,

their drift electrons follow a path that deflects inwards and increases the spread of

S2 in the top PMT array, therefore distorting position reconstruction. This field

distortion disappears with charge buildup on the wall. It was not noticed in AAr

running because of the high rate of 39Ar events, but the 30-fold decrease in trigger

rate with UAr has resulted in a slower buildup of charge and a longer-lived field non-

uniformity. The hole has slowly healed during UAr running. A brief discussion of

the appearance of the hole in UAr data can be found in Sec. 5.5.5 of Ref. [97]. The

presence of this hot spot in the 210Po population is likely due to some residual field

non-uniformity causing drift electrons from surface events near the column of LAr

between PMTs 2 and 19 to be deflected inward, allowing a higher percentage of S2

pulses to survive the wall effect.

In Fig. 4.38 it is clear that 210Po is almost entirely present on surfaces. There is

large population on the cathode, and a population at the top of the detector, with

a concentration at large r. The few events that reconstruct in the bulk are likely

contamination from the neighboring (in energy) 222Rn population.
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Figure 4.37. XY position of 210Po events with a valid S2 in the 532 live-day dataset

Figure 4.38. tdrift versus r for 210Po events with a valid S2 in the 532 live-day
dataset
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CHAPTER 5

MEASURING ION MOBILITY AND CHARGED
DAUGHTER FRACTION

5.1 RnPo Coincidences

We expect radon to be present in the bulk LAr, and therefore 218Po daughters

are initially in the LAr as well. Immediately afterwards, all daughter nuclei of alpha

particle decays are negatively charged due to the emission of an alpha particle (+2e).

However, the daughter isotope easily strips off its valence electrons in interactions

with the surrounding matter. For each alpha decay there is then some probability

that the daughter isotope will be either neutral or positively charged. In beta decays,

the daughter isotope is initially positively charged from the conversion of a neutron

into a proton within the nucleus. The energy of the recoiling daughter nucleus is

much lower than in alpha decay, so no electron stripping occurs [98].

For this study we focus on the 222Rn → 218Po decay. Given the mechanism de-

scribed in Ref. [98] we have reason to believe charged 218Po daughters will have a pos-

itive sign. This is confirmed by results measured by EXO-200 [90] and in DarkSide-50

data, as will be described below. If the polonium is positively charged it will drift

in the TPC towards the cathode at the bottom of the detector. Given timing and

position information for tagged pairs of radon and polonium events, we can easily cal-

culate an average velocity and extract the ion mobility (making assumptions about

the charge of the ions). The charged daughter fraction requires a more carefully se-

lected population of events to remove bias against events that drift all the way to

the cathode. This is because the probability to detect decays at the cathode is less
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than unity due to geometrical factors and issues with charge collection efficiency from

surfaces.

As far as we know, no measurement for charged radon daughter fraction and

ion mobility in liquid argon is reported in the literature1. However, the EXO-200

collaboration has performed these measurements for liquid xenon [90]. They measured

the fraction of charged 218Po and 214Bi daughters created from alpha and beta decays

to be 50.3 ± 3% and 76.3 ± 6.2%, respectively. They also measured the mobility of

218Po ions in liquid xenon and observed that the average ion velocity decreased for

longer drift times. The ions had an initial mobility of 0.390 ± 0.006 cm2/(kV s),

which decreased to 0.219 ± 0.004 cm2/(kV s). The time constant associated with the

mobility decrease was consistent with the electron lifetime in EXO-200, so impurities

in the LXe are thought to be responsible. The LAr in DarkSide-50 is of higher purity,

so we expect that our data will not exhibit a tdrift-dependent mobility.

5.2 Simulation

In order to gain insight about what to expect from RnPo coincidences in the data,

a toy Monte Carlo was written in C++/ROOT to generate RnPo pairs and related

observable quantities2. The simulation takes as input numerical values for the 218Po

lifetime (τ), charged daughter fraction (f), and ion mobility in LAr (µion). The value

of τ is known, τ = 268.3 s. For the other input parameters we start with the values

measured in EXO-200: f = 0.5 , µion 0.00039 cm2/(V s). Here we have used the

initial EXO-200 ion mobility because of the better purity of LAr in DarkSide-50. As

output, the simulation returns information as to whether the generated polonium

daughter was charged (PoCharged), the tdrift position of the radon decay (tdrifti

1A measurement of the mobility of 220Rn daughters in argon gas exists and will be discussed in
Sec. 5.4.

2The code for this simulation can be found in Appendix A.
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Figure 5.1. Overview of the toy monte carlo algorithm used to generate RnPo
coincidences in DarkSide-50

[µs]), the tdrift position of the polonium decay (tdriftf [µs]), the decay time for

the pair (decay time [s]), and whether the polonium decay was lost at the cathode

(PoLostAtCathode).

Fig. 5.1 gives a schematic of the RnPo simulation algorithm. We generate 108

RnPo coincidences, giving the Po daughter a probability of f to be charged. The

position of the Rn decay is drawn randomly from a uniform distribution between 0

and 373 µs3. The position of the Po decay is initialized to the position of the Rn

decay. Uncharged daughters remain at their initial position, but charged daughters

drift towards the cathode. They move with mobility µion a given distance in one time

step dt. Since we ultimately want the distance travelled by the ion to be expressed

in units of electron drift time (tdrift [µs]) we can express the distance travelled by

an ion (∆tdrift) in a time step dt as:

∆tdrift =
µion
µe−

dt (5.1)

3The full drift time is 376 µs, but we typically place a cut at lower values of tdrift to remove the
cathode. The choice of 373 µs is meant to reflect a maximum tdrift accepted for analysis.
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where µe− is the electron mobility in DarkSide-50, measured to be (456± 5) cm2/(V s)

[74]. If the Po daughter reaches the cathode it no longer moves and is given a 50%

chance of being observed. This is meant to account for detection efficiency, in this

case from purely geometrical factors. The Po daughter is given equal probability

to decay in each time step (dt/τ). If a randomly generated number is smaller than

this probability, the Po is said to have decayed at the end of that time interval.

Finally, histograms are filled with quantities of interest for various categories; charged

uncharged, generated pairs, and observed pairs.

Two spectra of tdriftf appear in Fig. 5.2, with RnPo coincidences with charged Po

daughters in magenta and uncharged daughters in black. The uncharged daughters

start uniform and stay uniform. There is an expected depletion of these events at the

cathode because the initial position of the pair is uniformly distributed throughout

tdrift, sometimes starting on the cathode where the daughter has a 50% chance of

being observed. The charged daughters all drift towards the cathode so we see a

depletion of events at low tdrift values and a large population on the cathode.

Fig. 5.3 shows the decay time spectrum color coded for various event selections.

All of the pairs generated in the simulation appear in blue. The observed pairs (all

pairs with PoLostAtCathode = FALSE) appear in red. Observed pairs that do not

end on the cathode (PoLostAtCathode = FALSE and tdriftf < 373 µs) appear

in violet and observed pairs with a Po decay on the cathode (PoLostAtCathode =

FALSE and tdriftf = 373 µs) appear in green.

The spectrum of all generated decays (blue) exhibits pure exponential decay, de-

scribed by Eq. 4.1. The spectrum of observed decays (red) is suppressed from the

blue at longer decay times and exhibits a kink at 436 s, the position of which is set by

the maximum drift time for ions in the volume. The spectrum of observed decays ne-

glecting the cathode (violet) exhibits a stronger suppression and kink. The spectrum

of observed decays on the cathode (green) is depleted at short decay times because it
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Figure 5.2. Toy monte carlo results for tdriftf of simulated RnPo coincidences

takes time for charged Po daughters originating elsewhere in the bulk to drift to the

cathode. Note that the red spectrum is the sum of the violet and green spectra.

To gain intuition before looking at DarkSide-50 data, we would like to understand

the red spectrum representing all observed decays. This spectrum can be analytically

described as a function of time. For the purposes of the derivation we will define

several useful parameters:

• τ ; the lifetime of 218Po

• tmax; the maximum drift time for 218Po ions, a function of ion mobility and the

maximum drift length

• f ; charged daughter fraction

• fc; fraction of charged daughters that can make it to the cathode in time t

assuming ions start out uniformly distributed through the volume

• Pc; probability to observe a decay on the cathode
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Figure 5.3. Toy monte carlo results for the decay time of simulated RnPo coinci-
dences

In our simulation these parameters have the following values: τ = 268.3 s, tmax =

436 s, f = 0.5, and Pc = 0.5. The maximum drift time for ions, tmax can be calculated

from Eq. 5.1 by substituting the maximum drift time for dt. The fraction of charged

daughters that can make it to the cathode in time t is given by

fc =
t

tmax
, t < tmax (5.2)

where for t ≥ tmax all charged daughters have made it to the cathode already.

To begin our derivation we split the RnPo decays into those with charged and

neutral daughters. For neutral daughters, the resulting decay time spectrum can be

described by

Fneutral(t) = A(1− f)e
−t
τ (5.3)
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where Fneutral describes the amplitude of the decay time spectrum, A is an amplitude

parameter, and t is decay time. For charged daughters, the resulting decay time

spectrum is described by

Fcharged(t) =


Af
[(

1− t
tmax

)
+ Pc

t
tmax

]
e
−t
τ t < tmax

AfPce
−t
τ t ≥ tmax

(5.4)

where Fcharged describes the amplitude of the decay time spectrum and is defined

piecewise and split by the time at which all charged daughters have made it to the

cathode, tmax. Note that fc appears as t/tmax in Eq. 5.4 and carries with it the

assumption that the charged daughters are initially uniformly distributed in the vol-

ume.

The full expression for the analytical description of observed RnPo decays is the

sum of Eqns. 5.3 and 5.4:

FCathLoss(t) = Fneutral(t)+Fcharged(t) =


Ae

−t
τ

[
1− f(1− Pc) t

tmax

]
t < tmax

Ae
−t
τ [1− f (1− Pc)] t ≥ tmax

(5.5)

where we have named this analytical description ‘the cathode loss function’ for ease

of discussion later.

In Fig. 5.4 we perform two fits to the red simulated decay time spectrum from

Fig 5.3 that represents all observed decays not lost at the cathode. The top plot

features a fit with a pure exponential decay with the form of Eq. 4.1. The fit does

not match the data well and yields an artificially short τ of ∼245.3 s. Recall that we

expect τ = 268.3 s. The bottom plot features a fit with the cathode loss function from

Eq. 5.5. It produces a much better fit to the data and returns values for τ , f , and

tmax that are comparable to the values used in the simulation. Fig. 5.4 demonstrates

that if we search for RnPo coincidences in the data and naively fit with a pure
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Figure 5.4. Fits with a pure exponential (top) and the cathode loss function (bot-
tom) to the simulated spectrum of observed RnPo coincidences
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exponential distribution we will measure an artificially short τ . However, if we fit

with the full cathode loss function we will measure a more accurate τ , and might

even gain sensitivity to additional parameters of interest.

5.3 DarkSide-50 Data

5.3.1 Event Selection and RnPo Search Algorithm

RnPo coincidences tagged in DarkSide-50 data can now be directly compared to

the simulation results. For this search we are looking for two alpha decays captured

in separate event windows4. The half-life of 218Po is 3.1 minutes and the trigger

rate during underground argon running in DarkSide-50 is ∼1.5 Hz, so we generally

expect for other random events to occur between the alpha decays. The goal is to

develop an algorithm that searches through events chronologically and pairs radon

and polonium decays. To start, we define selection criteria for decays specifically

from 222Rn or 218Po. We developed loose cuts for the purpose of examining rates in

Sec. 4.8, but now we will be studying the z-motion of Po isotopes in the TPC and

need to ensure that our energy cuts are not position-biased (recall that the 222Rn and

218Po decays are adjacent in energy).

We begin by plotting fully corrected S1 versus tdrift for all alpha-like events with

S2 (passing is alpha and valid S2), shown in Fig. 5.5. The requirement of a valid S2

removes the 210Po population, leaving behind two bands extending throughout tdrift

representing 222Rn on the left and 218Po on the right. These bands are mostly straight

in the middle of the detector, but bend to lower energies at the top and bottom. This

is due to our TBA correction to S1. Near either array of PMTs, the variable TBA

depends heavily on whether an event is located directly over a PMT face or over the

4In principle the Rn and Po decays can occur close enough in time that they inhabit the
same event window (440 µs duration), or one decay is lost to the time period rejected by the
livetime + inhibittime cut (1.35 ms duration). The probability of this can be evaluated as

P = 1
268.3s

∫ 0.00179s

0
e

−t
268.3s = 6.67× 10−6, which is negligible.
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Teflon reflector between PMTs. To avoid the breakdown of our correction we restrict

our search to an effective volume of [50, 340] µs in tdrift, where the bands are straight

and well-separated. This is reflected by the horizontal red lines in the figure. The

energy cuts are then determined by eye to be 38500 PE < S1 < 42100 PE for 222Rn

and 42100 PE < S1 < 45550 PE for 218Po. The full selection is therefore:

• is Rn222

– is alpha

– valid S2

– 50µs < tdrift < 340µs

– 38500 PE < S1 < 42100 PE

• is Po218

– is alpha

– valid S2

– 50µs < tdrift < 340µs

– 42100 PE < S1 < 45550 PE

The RnPo coincidence search algorithm is as follows. Initially we define a boolean

called Rn and set it to FALSE. We also define a number of parameters of interest,

to be assigned values later; Rn info = {tRn, tdriftRn, XRn, YRn}. When an event

is found that satisfies is Rn222, Rn is set to TRUE, and the appropriate variables

are saved in Rn info. The algorithm then continues searching for the next event

that satisfies either is Rn222 or is Po218. If a second Rn event is found, Rn remains

TRUE, Rn info is updated, and the algorithm continues. If a Po event is found and

Rn is TRUE the two events are considered a RnPo pair, various histograms are filled

with time and position differences, and Rn is reset to FALSE. If a Po event is found
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Figure 5.5. Plot of tdrift versus fully corrected S1 for alpha events with a valid S2

and Rn is FALSE, we have found two Po events in a row and the algorithm continues.

This process is summarized in Fig. 5.6.

Note that our algorithm assumes that RnPo coincidences can be reliably tagged

by pairing the 222Rn and 218Po events that are closest together in time. Given the

rates defined in Sec. 4.8, (7.62 ± 0.12) decays per day of Rn and (6.61 ± 0.11) decays

per day of Po, this is reasonable. Also, keep in mind that we are using a reduced

volume, so we expect roughly 77% of the quoted rates. We would expect to see

two radon events in a row (“RnRn”) when a charged polonium daughter drifts out

of the restricted analysis volume. Likewise, we can get two polonium events in a

row (“PoPo”) when radon decays above the analysis volume and a charged polonium

daughter drifts into the volume.

Running the search algorithm on the SLAD v3.5.0 532-day dataset results in 1795

identified RnPo pairs, 1026 incidences of RnRn, and 397 incidences of PoPo. The

energy separations are very effective, as evidenced by Figs. 5.7 and 5.8. Fig. 5.7

123



Figure 5.6. Overview of the algorithm to identify RnPo coincidences in DarkSide-50
data

Figure 5.7. S1 spectra for the Rn (magenta) and Po (yellow) events in identified
RnPo coincidences in DarkSide-50 data
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shows the S1 spectra for the constituent events of each identified RnPo coincidence,

with the radon decay appearing in magenta and the polonium decay in yellow. Fig. 5.8

shows the decay time spectra for both the RnRn and PoPo ‘coincidences’. Both decay

time spectra have been fit with an exponential (Eq. 4.1) plus a constant. The large

(>1) value returned for the constant in the fit and the error on τ comparable to its fit

value tells us that these ‘coincidences’ are not coincidences at all, but rather random

pairings.

5.3.2 Fits to Decay Time Spectrum

The decay time spectrum for identified RnPo pairs is shown in Fig. 5.9. It is fit

with a modified version of the cathode loss function from Eq. 5.5. Our restricted

analysis volume requires two modification to the original description of the cathode

loss function. The restricted volume decreases the maximum drift time for ions across

the volume, shortening tmax. More importantly, once a Po daughter leaves the volume

it has zero probability to be observed, so Pc → 0. The fit function then becomes:

FMod
CathLoss(t) =


Ae

−t
τ

(
1− f t

tmax

)
t < tmax

Ae
−t
τ (1− f) t ≥ tmax

(5.6)

A binned likelihood fit of Eq. 5.6 to the data yields τ = (242.8 ± 15.1) s, f = (0.35

± 0.07), and tmax = (177.0 ± 34.8) s.

The value of τ extracted from the fit is within 2σ of the known value. The

extracted f is lower than what has been measured in LXe, but we do not necessarily

expect LAr and LXe to be the same. Note that the small value of the constant

returned by the fit confirms the cleanliness of the RnPo coincidence sample. Lastly,

tmax depends on the drift speed of 218Po ions in LAr and the maximum drift length

in the detector:

tmax =
dmax
vion

=
dmax
µionE

(5.7)
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Figure 5.8. Decay time spectra for RnRn (top) and PoPo pairs (bottom) identified
in DarkSide-50 data
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Figure 5.9. Decay time spectrum for RnPo pairs identified in 532 live-days of
DarkSide-50 data
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where dmax is the maximum distance an ion can drift [mm], vion is the drift speed of

the ion [mm/s], µion is the ion mobility [10−2cm2/(V s)], and E is the drift electric

field [V/mm]. The maximum drift length across the reduced analysis volume is 290

µs in tdrift, or (311.8 ± 3.4) mm at the standard field configuration (E = 200 V/cm,

ve− = (0.93 ± 0.01) mm/µs [74]). Therefore a fitted tmax value of (177.0 ± 34.8) s

corresponds to an ion drift velocity of (1.08 ± 0.48) mm/s and an ion mobility of (5.4

± 2.4)×10−4 cm2/(V s).

5.3.3 Validity of Values Extracted from Decay Time Fits

However, before we take the results of the modified cathode loss function fit too

seriously, we must examine the sensitivity of the fits by building likelihood profiles

for the various fit parameters around their fit values. This is done in two ways for

each parameter xi: a likelihood estimator is evaluated by (1) scanning through fixed

values of xi but leaving the rest of the parameters xn6=i free to vary, or by (2) scanning

through fixed values of xi with the rest of the parameters xn 6=i fixed to their values

from the fit in Fig. 5.9. Note that only τ , f , and tmax are considered as xi. The

amplitude parameter is always left free to vary and the constant is fixed to zero

throughout. Likelihood profiles are built from fitting the data in Fig. 5.9.

The results are shown in Figs. 5.10 - 5.12. Likelihood profiles are generated from

methods (1) and (2) for τ and tmax. Only the fits for the fixed likelihood profile

of f converge. The value of the selected parameter resulting from the full decay

time spectrum fit is denoted by a gray dashed line. The likelihood profile for tmax

is quite shallow and flat around its minimum, telling us that our sensitivity to this

parameter is low. The profiles for τ and f are steeper, but the fit values are not

located at the minima. The fit is balancing the various parameters and selecting an

ideal combination for which τ and f are away from their local minima.
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Figure 5.10. Likelihood profile for τ with f and tmax fixed (left) and unfixed (right)

Figure 5.11. Likelihood profile for tmax with τ and f fixed (left) and unfixed (right)

129



Figure 5.12. Likelihood profile for f with τ and tmax fixed

The likely explanation is that the fit parameters are correlated. We can use the

high-statistics simulation results from Sec. 5.2 to explore correlations between the

variables. We select pairs of variables to examine and fix all others to the values

from the fit to the simulated observed decay time spectrum (Fig. 5.3). We then scan

through values for one parameter and extract the fit results from the other to build

correlation plots. Fig. 5.13 shows the correlation plots for τ and tmax (top left), τ and

f (top right), and tmax and f (bottom). All of the parameters are correlated. From

this we draw the conclusion that the decay time spectrum fit is not sensitive enough

to make an independent statement on the values of τ , f , and tmax. However, the

decay time fits will be used as a consistency check on the values extracted by more

reliable means in Sec. 5.3.4.

5.3.4 Measuring Charged Daughter Fraction from Ion Velocities

We can more directly measure the charged daughter fraction and ion mobility by

examining the populations of charged and uncharged daughters. RnPo pairs with

charged daughters are more likely to be excluded from the data sample because the

218Po ion may drift out of the analysis volume. For these measurements, particularly
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Figure 5.13. Correlation plots between τ and tmax (top left), τ and f (top right),
and tmax and f (bottom) generated from fits to simulation results
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the measurement of f , we need to apply an additional requirement to the identified

RnPo pairs to ensure a balanced selection of charged and uncharged daughters. To

this end we require:

tdriftRn < tdriftmax −
vmaxion

ve−
· tdecay (5.8)

where tdriftRn is the tdrift position of the Rn decay, tdriftmax is the maximum

value of tdrift included in the analysis volume (340 µs), vmaxion is the maximum drift

velocity of 218Po ions, ve− is the drift velocity of electrons (0.93 ± 0.01 mm/µs at

200 V/cm), and tdecay is the observed decay time for the RnPo pair. The value of

vmaxion is defined as vavgion + 2σ, where vavgion and σ are extracted from a Gaussian fit to the

upper population in an initial velocity plot filled with all RnPo pairs yielding vmaxion =

2.24 mm/s.

Eq. 5.8 requires that the starting position of the Rn decay be far enough up in

tdrift that, given the decay time of the RnPo pair, the Po daughter would still be

contained within the analysis volume when it decays if it was charged and moving at

vmaxion . Charged daughters that are tagged by the general RnPo coincidence algorithm

pass this requirement by default. The additional requirement effectively removes

uncharged daughters in the same proportion as the charged daughters exit the analysis

volume.

Fig. 5.14 shows the velocity spectrum for all RnPo pairs passing the additional

requirement. The sample has been reduced from 1795 to 461 identified pairs. The ion

velocity is calculated from the data by vion = (tdriftPo− tdriftRn) ·ve−/tdecay. There

are two populations in this plot, one at zero velocity and another at ∼1.7 mm/s.

This indicates that there is only one charged species of Po ion produced in the 222Rn

decay. This is consistent with expectations given that the first and second ionization

potentials of polonium are 8.42 eV and 19.28 eV, respectively, and the ionization

potential of LAr is 15.76 eV.
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Figure 5.14. Plot of the average velocity of 218Po ions for selected RnPo pairs

A Gaussian fit to the upper population yields an ion velocity of vion = (1.72

± 0.26) mm/s, where we have used the standard deviation σ from the fit as the

error on vion. Using Eq. 5.7, this corresponds to an ion mobility of (8.6 ± 1.3)

×10−4 cm2/(V s) and a max drift time for ions of (153.8 ± 23.3) s. The max drift

time for ions calculated from the velocity plot is within error of the value extracted

from the decay time spectrum fit. We designate RnPo pairs as belonging to the

1.72 mm/s population if they fall above 0.8 mm/s on the velocity plot. RnPo pairs

with velocity below 0.8 mm/s belong to the zero velocity population. The charged

daughter fraction is therefore (0.373 ± 0.029), which is within error of the value

extracted from the decay time fit.

Note that Fig. 5.14 represents the average velocity of 218Po ions over their full

drift since we simply divide to total z-position difference by the total time elapsed

between decays. If the 218Po ion drift velocity changes as a function of time, due to
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Figure 5.15. Plot of the average velocity of 218Po ions versus decay time for selected
RnPo pairs

impurities for example, that would not be captured in this plot. This was the case in

EXO-200 where they observed a drift time-dependent ion velocity that was ascribed

to the presence of impurities in the LXe [90]. To check the stability of the ion velocity

in DarkSide-50 as a function of drift time, vion versus (tdriftPo− tdriftRn) is plotted

in Fig. 5.15. The 1.72 mm/s population does not have an obvious time dependence.

Statistics are limited, but we can fit a Gaussian to the 1.72 mm/s population for

a few slices of decay time to determine if the average velocity decreases. Tab. 5.1

summarizes the results of fits performed on the upper velocity population for three

different decay time slices. Note that statistics decrease at longer decay times. At

worst, the velocity appears to decrease by 4% at the longest decay times. However,

the values in Tab. 5.1 are within error of each other.
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Decay Time Slice Fitted Average Ion Velocity
[0, 37.5]s (1.75 ± 0.30)
[37.5, 75]s (1.68 ± 0.21)
[75, 120]s (1.68 ± 0.15)

Table 5.1. Table of fit results for average ion velocity in three slices of decay time.

5.3.5 Limits on XY Resolution and LAr Flow

RnPo coincidences can also be used to place upper limits on the resolution of

our XY reconstruction algorithm and the possible motion of liquid argon within the

TPC. As we have seen, charged 218Po daughters certainly move in the drift field

direction. However, charged and uncharged daughters have no expected reason to

move transversely other than by thermal or diffusive motion. Granted, the 218Po

daughter may recoil transversely from the decay of 222Rn, but the distance travelled

by a 218Po ion in LAr is on the order of microns, which is too small to be resolvable.

Any transverse movement between the observed Rn and Po decays that manifests

as a noticeable change in XY position must be due to other effects. The two effects

considered here are XY resolution (the events occur in the same position but our

algorithms mistakenly reconstruct them at different positions), and LAr flow (the XY

reconstruction algorithm was accurate but the daughter was carried by the motion of

LAr to a new position).

To examine our XY resolution we look at a plot of the difference in recon-

structed XY position between the constituent events in RnPo pairs. This is defined

as ∆XY =
√

(xPo − xRn)2 + (yPo − yRn)2, and is plotted for all RnPo pairs passing

the additional requirement described by Eq. 5.8 in Fig. 5.16. The plot is split between

charged daughters (magenta) and uncharged daughters (black). The two populations

are fit with Gaussians centered at zero to extract σcharged = (0.63 ± 0.04) cm and

σuncharged = (0.58 ± 0.03) cm for the charged and uncharged daughters respectively.

A plot of ∆XY versus tdriftRn is shown in Fig. 5.17, demonstrating that transverse
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Figure 5.16. Plot of ∆XY for selected RnPo pairs in DarkSide-50 data

displacement does not seem to be correlated with the starting position of the RnPo

pair.

Unfortunately, we cannot disentangle resolution effects from actual motion of the

Po daughter. However, we can provide a limit on resolution of the XY reconstruction

algorithm by considering the worst case that all transverse displacement is entirely

due to XY resolution effects. In that case, the XY resolution can be no worse than the

FWHM implied by the Gaussian fits to Fig. 5.16: XYres < (1.37± 0.07) cm. We quote

the value derived from the Gaussian fit to the uncharged daughter population because

it provides the stronger limit. The quoted XY resolution from Jason Brodsky’s thesis,

covering the XY reconstruction algorithm used for this analysis, is (0.61 ± 0.09) cm

[79]. This number was generated from an analysis of just 27 BiPo and RnPo events

discovered in early DarkSide-50 data. This resolution estimation is obviously statistics

limited. Furthermore, the selection of the alpha events in the coincidences is less

rigorous than in this study, in particular the S2 pulses are only required to have
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Figure 5.17. Plot of ∆XY versus tdriftRn for selected RnPo pairs in DarkSide-50
data

f90 <0.1 and more than 100 PE total. It is possible for the misidentified ‘pulses’

formed by clusters of photoelectrons in the tail of S1 (see Sec. 4.6) to satisfy these

requirements. Our estimation is supported by improved statistics.

By similar arguments, we can use the RnPo pairs to place an upper limit on the

motion of liquid argon in the DarkSide-50 TPC. We are constantly circulating argon;

LAr is fed in through an entry port at the bottom of the TPC and extracted from

a bubbler part of the way up the side of the TPC to be boiled and fed across the

gas pocket. A diagram noting the location of the LAr entry and exit points from the

TPC is shown in Fig. 5.18. Prior to this study there was no information available

about the motion of LAr within the TPC.

There is more than one factor driving motion of the liquid argon. Most simply, we

expect some motion of the volume because of circulation. Our TPC expert, Hanguo

Wang, estimates 18.7 g/min [100] of LAr entering through the TPC entry point in
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Figure 5.18. Diagram of the LAr entry and exit points in the DarkSide-50 TPC.
Image from Ref. [99]

Fig. 5.18. The liquid level in the TPC is maintained, so the rate of LAr exiting

through the bubbler port, located ∼ 55 µs down from the top of the detector in

tdrift, is the same. There are 46.4 kg of LAr in the DarkSide-50 TPC, with 39.5 kg

contained below the exit port. Given the LAr entrance rate of 18.7 g/min, it would

take 2112 minutes to recirculate the volume of liquid below the exit port.

The path of liquid between the entrance point and exit port is unknown. However,

we can make a rough estimation of circulation speed of LAr in the TPC by assuming a

path shape. Consider an argon atom entering the TPC, traveling in a semi-circle from

the inlet at ∼376 µs in tdrift to the bubbler at ∼55 µs. Taking the diameter of the

semi-circle to be the distance between these points in z (321 µs in tdrift, 299 mm),

and approximating that the entry and exit points are stacked in z, this corresponds

to a distance of 470 mm. Note that the diameter of the TPC is 365 mm (> 296 mm).

For the given path length, the liquid moves 470 mm in 2112 minutes, corresponding

to a LAr flow speed of 0.004 mm/s. We have assumed that the liquid argon moves

uniformly and with constant velocity, which is certainly an approximation. For the
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characteristic time of the 218Po decay, 4.5 minutes, this corresponds to a characteristic

displacement of 1 mm. This is well below our XY resolution, either from Jason’s thesis

or the new estimation in this analysis, and corresponds to less than a 1 µs difference

in tdrift.

However, circulation is not the only source of motion in a noble liquid TPC. A sig-

nificant amount of motion can be introduced by natural convection; any temperature

gradient in a bulk liquid produces a density gradient that drives fluid motion due to

pressures and forces arising from gravity acting on the regions of different density. In

the LUX experiment, a LXe flow has been observed at up to a few cm/s [101] that is

thought to be convective in origin.

We have shown that the LAr flow from circulation in DarkSide-50 is below our

detector resolution, but it is possible for convective flow to produce an observable

position discrepancy. We can set an upper limit on the overall motion of the LAr

by examining the ∆XY distribution as a function of decay time, shown in Fig. 5.19.

Almost all pairs reconstruct within 5 cm from each other, even for the longest decay

times. This implies a transverse flow rate of no more than 0.42 mm/s. To estimate the

liquid motion in the z-direction we can fit the population of uncharged daughters in

the plot of ion velocities in Fig. 5.20 (a reproduction of the same data from Fig.5.14).

A Gaussian fit yields 2σ < 0.1 mm/s, centered around zero. Again, we cannot dis-

entangle resolution effects from LAr motion, but we can take as a worst case that all

position discrepancy comes from LAr motion. The RnPo pair positions then imply a

flow velocity of {vXY , vz} ≤ {0.42, 0.1} mm/s, or ≤ 0.43 mm/s combined.

5.4 Summary of Results

A summary of the measurements from Sections 5.3.2 and 5.3.4 are shown in

Tab. 5.2, along with other measurements from the literature. The values from the two

independent measurements conducted in this study (the fits to the decay time spec-
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Figure 5.19. Plot of ∆XY [cm] versus decay time [s] for selected RnPo pairs in
DarkSide-50 data

Figure 5.20. Plot of the average velocity of 218Po ions for selected RnPo pairs, with
a fit to the uncharged population

140



trum and analysis of ion velocities) are self-consistent. The measurements from this

study are also within error of the analysis performed in Chris Stanford’s thesis [91].

The ion mobility in liquid argon is higher than in liquid xenon, with the mobility

differing by a factor of (8.6 ± 1.3)[10−4 cm2

V s
]/(3.90 ± 0.06)[10−4 cm2

V s
] = (2.2 ± 0.3). It

is not unexpected that the measured mobilities in Ar and Xe would differ, as the two

liquids have different densities. In fact, the relative density of xenon to argon is (2.942

[ g
cm3 ]/1.395 [ g

cm3 ]) = 2.1 [102]. The difference in the measured mobilities is consistent

with an inversely proportional relationship between density and the mobility of ions

in the noble liquids:

µion ∝
1

ρliq
(5.9)

where ρliq is the density of the liquid medium. Note that a comparison of mobility

between experiments automatically corrects for different TPC drift field strengths.

Though there are no measurements of 218Po ion mobility in liquid argon, a mea-

surement of the mobility of 216Po ions in argon gas can be found in Ref. [103]. The

216Po ion mobility was measured to be 0.46 cm2

V s
in argon gas at 1030 mbar and 22 ◦C.

For this pressure and temperature the argon gas has a density of 0.0017 g
cm3 . If we

assume the relationship between mobility and density in Eq. 5.9 is correct and neglect

any differences between liquid and gas phases, then the measurement of 0.46 cm2

V s
in ar-

gon gas can be scaled to its equivalent value in liquid argon, yielding ∼5.6 ×10−4 cm2

V s
.

The mobility measured in this study is generally consistent with the mobility implied

by this scaling.

The charged daughter fraction measured for 218Po in LXe (0.503 ± 0.03) is higher

than in LAr (0.373 ± 0.029) by a factor of (1.35 ± 0.17). The ionization of a daughter

isotope in the aftermath of a radioactive decay depends upon the surrounding material

to strip away valence electrons. It makes intuitive sense that increasing density would

lead to a higher fraction of charged daughters. However, the relationship between

charged daughter fraction and liquid density does not appear to be strictly linear.
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Medium/Experiment
(Source)

tmax
[s]

vion
[mms ]

µ

[10−4 cm2

V s ]
f

LXe/EXO-200
(Ref. [90])

– 1.48 ± 0.01 3.90 ± 0.06 0.503 ± 0.03

LAr/DS-50
(C. Stanford [91])

– 1.53 ±0.05 7.64 0.36 ± 0.05

LAr/DS-50
(tdecay fit)

177.0 ± 34.8 – – 0.352 ± 0.071

LAr/DS-50
(vion plot)

153.8 ± 23.3 1.72 ± 0.26 8.6 ± 1.3 0.373 ± 0.029

Table 5.2. Table summarizing the results of RnPo analysis with comparisons to
literature.

Lastly, we used identified RnPo coincidences in DarkSide-50 to provide a worst

case upper limit on our XY-resolution of: XYres < (1.37 ± 0.08) cm. We also placed

an upper limit on the motion of the liquid argon within the TPC of: {vXY , vz} ≤

{0.42, 0.1} mm/s, or ≤ 0.43 mm/s combined.
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CHAPTER 6

SURFACE ALPHA SIMULATIONS

210Po is the most interesting and dangerous alpha-emitting isotope present in

DarkSide-50 because it has the potential to form a background to the WIMP search.

As we will see in Sec. 6.5, 210Po is almost entirely present on surfaces in the detector;

the cathode, anode, and potentially the cylindrical walls. It is unclear from which

surface material layer the observed 210Po alphas originate, i.e. how deep within a

surface they are. We have already seen that it is possible for surface 210Po events to

be degraded enough in energy to fall within the S1 range of the WIMP search. This is

discussed in detail in Chris Stanford’s thesis [91] and in Chapter 7 of this work. It is

important that we quantify the 210Po background in the detector, not only for future

DarkSide-50 WIMP searches, but also to gain insight into material requirements as

we plan the next phase of the DarkSide experimental program: DarkSide-20k. To this

end, monte carlo simulations have been created to study the S1 spectra resulting from

distributions of 210Po within different surface layers in the DarkSide-50 detector. The

goal is to use the observed S1 spectrum from data, coupled with simulation results,

to say something about the origin of the 210Po contamination in DarkSide-50.

6.1 Using SRIM Output

The simulation is a toy monte carlo written in C++/ROOT, built upon infor-

mation from Stopping Range of Ions in Matter (SRIM). SRIM provides tables of

electronic and nuclear stopping power as a function of particle energy for an alpha

particle in the relevant materials; LAr, TPB, ITO, and Teflon. As input we provide

143



Material Elemental Makeup
Density
[g/cm3]

Range of 210Po α
[µm]

TPB C (44%) H (56%) 1.079 37.4
ITO In (34.6%) Sn (3.9%) O (61.5%) 7.140 13.8

Teflon C (33.33%) F (66.67%) 2.200 24.6

Table 6.1. Table of input given to SRIM for each target material.

SRIM with an ion (in this case an alpha particle), and a material specified by ele-

mental makeup and density. Tab. 6.1 summarizes the input values for the materials

used in this study, as well as the projected range for a 210Po alpha if it loses all of its

energy to the given material.

SRIM provides as output a table of nuclear (dE
dx
{nuc}) and electronic (dE

dx
{elec})

stopping power, as well as lateral and longitudinal straggling and projected range, all

as a function of the initial energy of the ion. The steps in energy between lines in the

table vary from 1 keV at low energy to 1 MeV at high energy. Our simulation will

generate alpha particles traversing thin layers of material along tracks that are, in

most cases, shorter than their full projected range in that material. We are therefore

interested in obtaining an analytical relationship between distance traveled and energy

lost by an alpha particle in a given medium. This depends on the initial energy of

the alpha particle and requires additional processing of the output from SRIM.

We can obtain a relationship between the distance traveled in a material (dmat)

and the energy lost to that material (Elost = Einitial − Efinal) by integrating the

differential stopping power provided by SRIM:

dmat = −
∫ Efinal

Einitial

1

dE/dx
dE (6.1)

where dE/dx is the sum of the nuclear and electronic stopping powers:

dE

dx
=
dE

dx
{nuc}+

dE

dx
{elec} (6.2)
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Figure 6.1. Plot of 1
dE/dx

versus energy for a 210Po alpha in TPB

Of course, we do not have a smooth analytical function to represent dE
dx
{nuc/elec},

only the entries in the SRIM table. We use the SRIM table to fill a TGraph in ROOT

with 1
dE/dx

versus energy E, shown in Fig. 6.1 for TPB. We then interpolate between

points in the TGraph using a cubic spline. After scanning through values of Elost and

performing numerous integrals as described by Eq. 6.1, we can construct a TGraph of

Elost versus dmat. Fig. 6.2 shows Elost versus dmat curves for the materials of interest.

It is important to keep in mind that the curves in Fig. 6.2 are only valid for an

alpha particle with an initial energy equal the full 210Po alpha energy (Eα[210Po] =

5.30 MeV). If we know that a 210Po alpha traveled a distance dmat within TPB, we can

easily calculate Elost by evaluating the TGraph from Fig. 6.2 with another cubic spline

interpolating between points. However, for this simulation we are interested in alphas

that may traverse more than one layer of material. Consider the case that an alpha

particle originates from within the Teflon and loses some energy there, then enters the

TPB layer and loses more energy, finally exiting to the LAr. For this case we need a
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Figure 6.2. Plot of energy lost versus distance traveled for 210Po alphas of initial
energy 5.3 MeV in TPB (violet), ITO (blue), and Teflon (green)

specially generated Elost versus dmat curve for the specific energy of the alpha particle

as it enters the intermediate TPB layer. Generating this on the fly is computationally

expensive. Instead, at the same time that we generate Elost versus dmat curves, we

also generate a 2D histogram of Einitial versus dmat where the bin contents represent

Elost for the given combination of initial energy and distance travelled. Elost can

then be calculated in the simulation by evaluating the histogram at (dmat, Einitial),

more specifically by a bilinear interpolation based on the four nearest bin centers. An

example 2D histogram is shown Fig. 6.3 for TPB.

6.2 Simulation Method

The purpose of the simulation is to produce S1 spectra for alpha particles origi-

nating from different depths within different layers of surface material in DarkSide-50.

There will be two separate simulation geometries for DarkSide-50, one for the cathode

(ITO, TPB, LAr) and one for the walls (Teflon, TPB, LAr). The simulation focuses
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Figure 6.3. 2D histogram of Einitial versus dmat where the bin contents represent
Elost for TPB

entirely on the size of the S1 signal and does not provide information about S1 timing

or S2. Fig. 6.4 provides an illustration of alphas interacting with a typical distribution

of material layers. Both the cathode and the wall have an outermost non-scintillating

layer (ITO coated fused silica or Teflon), a layer of scintillating TPB, and then a layer

of liquid argon of effectively infinite thickness. The thickness of the layers and the

length of the alpha particle tracks in the illustration are not to scale. The alphas in

the illustration would provide the following observable energy deposits: (1) all energy

deposited in LAr, (2) all energy deposited in TPB, (3) partial energy deposited in

TPB, (4) partial energy deposited in TPB and the rest in LAr, and (5) no energy

deposited in scintillating materials.

The alpha decays in Fig. 6.4 are depicted as arrows; straight line tracks of a

projected range. For the simulation we assume that the alpha particles follow straight

line tracks and do not take any straggling into account. We also neglect the recoil

of the daughter nucleus in the alpha decay and simulate only the alpha particle with

energy Eα. Given an initial alpha particle energy, thicknesses for the various layers
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Figure 6.4. Illustration of alpha interacting with a typical distribution of material
layers

of material, plots of Elost vs. dmat and Elost vs. Einitial vs. dmat, and light yields for

alpha particles in LAr and TPB, we can generate simulated S1 spectra. The specific

mechanics of each simulation are detailed in the following sections.

The light yield for alpha particles in LAr is measured in Sec. 4.7 to be (7.157

± 0.002) PE/keV. Unfortunately, LY α
TPB is unknown for DarkSide-50. A dedicated

experiment associated with DEAP has measured that TPB emits (882 ± 210) pho-

tons/MeV under direct alpha particle excitation [92]. The quantity LY α
TPB is a com-

bination of the number of photons/MeV emitted by TPB and the light collection

efficiencies of the experiment under consideration. It is therefore dependent on the

exact experimental setup. The measurement in Ref. [92] can only serve as an upper

limit on what to expect in DarkSide-50.

6.3 Replicating the Princeton Setup

The simulation will first be tuned on a simple geometry; a table-top experiment

performed at Princeton by a DarkSide collaborator. This will allow us to get our
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Figure 6.5. Photo of the 210Po needle source positioned on a TPB-coated slide in
the Princeton experiment

own dedicated estimate of the light yield of TPB under alpha particle excitation. We

mainly use this simple geometry to check the validity of the simulation method.

6.3.1 Simulation of 210Po Needle Source

Two experiments performed in the Princeton setup were replicated for this study.

The first utilized a 210Po needle source to irradiate a thin TPB film. A 300 µg/cm2

TPB layer was vacuum deposited at Princeton onto a 1” square quartz slide, corre-

sponding to a TPB thickness of 2.78 µm. The needle was positioned to lay horizontally

against the TPB-coated slide, pictured in Fig. 6.5. However, the portion of the needle

with eye slopes upward, leading to a slight separation between the TPB and the eye

of the needle. The source is manufactured by Spectrum Technologies by dipping the

gold-plated eye of a No. 9 Gold Eye Applique Needle from Clover Mfg Company in

a solution of PoCl4 in 2M HCL with a radionuclidic purity of > 99%.

For ease of simulation, the 1” square slide is approximated as a circular TPB

layer with 1” diameter. The projected range of a 210Po alpha (Eα[210Po] = 5.30 MeV)
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in TPB is 39 µm. We also approximate the 210Po needle source as a point source

positioned at r = 0 and a variable distance above the TPB surface, ranging from 0.5

to 2.2 mm. The simulation is as follows:

• All tracks start from {r, z} = (0, needle position), coordinates are pictured in

Fig. 6.6. Each track is given an angle of propagation θprop from a uniform dis-

tribution between π/2 and π, where θprop is defined as in spherical coordinates.

• Tracks are propagated from their start position to the TPB interface: {r, z} =

(rTPBinterface, z
TPB
interface). Tracks that never reach the TPB interface, or reach the

interface with rTPBinterface > 1” are thrown out

• Once reaching the TPB layer, the alpha continues to propagate along the current

trajectory with a track length corresponding to the full projected range for a

210Po alpha in TPB.

• If the track is fully contained within the TPB layer then the full energy is

deposited (Elost = Eα[210Po]). If the alpha exits the TPB layer the distance

travelled in TPB is calculated and the energy deposited (Elost) is evaluated

from Fig. 6.2.

• S1 is calculated by S1 = LY α
TPB · Elost

• S1 is smeared according to a Poisson distribution with S1 as the mean

The results of the basic simulation are shown in Fig. 6.7. The data collected in the

Princeton experiment is shown in black. Princeton experiment data was collected with

several different acquisition window lengths in order to capture long-lived scintillation

components from the TPB for timing studies. Here we have chosen to use the data

collected with a 2000 µs window. Longer acquisition windows provide spectra that

are shifted upwards in energy but are the same in general shape. The simulation

results are color coded based on needle position.
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Figure 6.6. Photo of the 210Po needle source positioned on a TPB-coated slide in
the Princeton experiment

Figure 6.7. Results of the basic needle source simulation compared with data from
the Princeton experiment
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It is obvious from Fig. 6.7 that the simulations do not match the data. The most

striking incongruity is that there is no full deposition peak in the experimental data.

Almost all of the simulated spectra end in a Gaussian peak representing alpha particle

tracks that are fully contained within TPB. This full deposition peak disappears for

needle position values sufficiently far away such that tracks shallow enough to be

contained in z exit the layer in r, producing a shoulder at the upper right edge of the

simulated S1 spectrum.

The initial value of LY α
TPB used for the simulation was determined by dividing the

endpoint of the measured spectrum by Eα[210Po]. However, since no full-deposition

events seem to exist in the data, LY α
TPB was later tuned to a value of 396 PE/MeV

to provide the best agreement between simulation and data around the low energy

peak.

The main cause of the lack of agreement between the basic simulation and the

experimental data was the assumption that the 210Po needle source is mono-energetic.

The true energy spectrum of alphas emitted from the source, measured with a diode

detector at Princeton, turned out to be degraded. The spectrum, shown in Fig. 6.8,

is clearly non-Gaussian with a tail at low energies. Note that the spike around zero

is due to noise in the detector and can be ignored. The energy scale was tuned using

214Po alphas from tagged BiPo events as a calibration.

A more detailed simulation was then produced. A probability density function

(PDF) was produced from the histogram in Fig. 6.8 after the low-energy noise was

removed by hand. Each track in the simulation is given a random starting energy

sampled from this PDF. Unfortunately, the variability in starting energy requires the

use of the interpolated 2D histogram in Fig. 6.3 to evaluate the energy lost to TPB,

which is much slower than using Fig. 6.2 in the mono-energetic case.

In addition, the second version of the simulation includes an approximation of

the effect of variation in the thickness of the TPB layer. DEAP has reported a 50%
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Figure 6.8. Energy spectrum of 210Po alpha emitted from the Spectrum Technologies
needle source

thickness variation in their TPB layers [93], and it is likely that our TPB layers have

comparable variation. This is implemented very simply by drawing a random TPB

variation from a uniform distribution between ±25% and giving each track its own

effective TPB thickness. Note that each track has a smooth TPB surface of differing

thickness and no attempt is made to handle roughness of the TPB with alphas moving

in and out of the scintillating material. The effect of the TPB variation is a general

smoothing of features in the spectra.

Lastly, we found that the data requires the presence of some effect that reduces

the number of shallow angle tracks in the simulation. The best agreement between

data and simulation was achieved by allowing tracks to skip out of the TPB layer

without depositing any energy. This occurs with a probability of zero for vertical

tracks (θprop = π) and a probability of 1 for horizontal tracks (θprop = π/2) with a

linear relationship in between: prob = 2(1− 1
π
θprop). With the inclusion of this effect,

the spectra showed no significant difference with needle position, so only one distance
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Figure 6.9. Results of the more detailed needle source simulation compared with
data from the Princeton experiment

was simulated: 0.05 mm. Fig. 6.9 shows the results of the simulation including the

degraded emission spectrum, TPB variation effect, and probability for alphas to skip

out of the TPB layer. The small excess in simulated events at very low S1 can

be ignored with respect to the experimental data, as no trigger/detection efficiency

was implemented in the simulation. Otherwise, the simulated spectrum is in good

agreement with the data from the Princeton experiment.

The effect of alphas skipping out of the layer, though necessary to match the data,

is not physically well-motivated. Or rather, the origin of the relationship between

skipping probability and θprop is not clear. It has been shown that the 210Po needle

source does not provide mono-energetic alpha particles. It could also be the case

that, due to the geometry of the eye of the needle and other characteristics of the

source, alphas with degraded energies are emitted at shallow angles and full energy

alphas are emitted nearly perpendicular to the TPB layer. This could be the case
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if the needle was coated in a protective layer after immersion in the PoCl4 solution,

however, Spectrum says that no protective coating is applied. It is also possible for

variations in the TPB layer to effect energy depositions in a more intricate way than

the approximation used for the simulations allows, particularly if the surface is rough.

This will be discussed more in Sec. 6.5.

6.3.2 Simulation of Deposited Rn Daughters

Unfortunately, it is difficult to disentangle the effect of TPB variation from com-

plications arising from the source, which is not mono-energetic and has a strange

geometry. For this reason, a new dataset was collected at Princeton utilizing a dif-

ferent alpha source. This time a 1.5 cm square quartz slide with 400 µg/cm2 of TPB

(corresponding to 3.71 µm thickness) was placed flat in a chamber filled with a mix of

Ar and 222Rn gas for ∼2 hours. After exposure to the 222Rn gas, the slide was removed

from the chamber and left for 1 hour to allow the 218Po to decay away. According

to Bateman’s equations, after 1 hour only 0.00015% of the original deposited 218Po

atoms have yet to decay and 26.84% have reached the BiPo step in the decay chain.

The data, taken in vacuum at room temperature, is almost entirely 214Po alphas from

the surface of the TPB layer.

Similar to the needle source simulation, the simulation of radon daughters de-

posited on the TPB layer is performed as follows:

• Each alpha originates from the surface of the TPB layer with a position in

{X,Y} drawn from a uniform distribution across the dimensions of the slide

• The energy of the alpha, in this case, is mono-energetic with Eα[214Po] =

7.70 MeV

• Each alpha is given an emission direction in spherical coordinates, with r equal

to the projected range for a 7.7 MeV alpha particle in TPB, and propagation
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angles θprop drawn from a uniform distribution between [π
2
, π] and φprop from a

uniform distribution between [0, 2π]

• Each track is given an effective TPB thickness with a variation of ±25% as

described for the needle source simulation

• Tracks that are fully contained within the TPB layer deposit their full energy

in the TPB, dmat is calculated for tracks that exit the layer and is converted

into Elost via the curve in Fig. 6.2

• S1 is calculated by S1 = LY α
TPB · Elost

• It was found that additional smearing provided a favorable agreement between

data and simulation, so rather than Poisson-smearing S1, it is smeared with a

Gaussian PDF with mean = S1 and σ = 4.5 ·
√
S1.

The results are shown in Fig. 6.10. The agreement is not perfect at intermediate

energies, but the location of the endpoint of the spectrum and the low energy peak

agree well. The value of LY α
TPB was tuned to a value of 247 PE/MeV, which is

lower than in the needle source simulation, but likely to be more accurate due to the

presence of a full deposition peak in this data.

Overall, the results of the S1 spectra simulated to match these two configura-

tions of the Princeton experiment have allowed us to estimate LY α
TPB to be 200 -

400 PE/MeV. This is a factor of 2 - 4 lower than light output of TPB measured in

Ref. [92], implying a light collection efficiency of 22-45% in the Princeton setup. The

TPB light yield measured in the second Princeton experiment simulation (LY α
TPB

= 247 PE/MeV) will be used as a starting value in the DarkSide-50 simulations.

Furthermore, the reasonable agreement between Princeton experiment data and the

simulations described here give us confidence in the simulation method.

156



Figure 6.10. Results of the simulation of deposited radon daughters compared with
data from the Princeton experiment

6.4 Replicating DarkSide-50

The DarkSide-50 geometry differs from the simulations of the Princeton exper-

iment by the inclusion of LAr and multiple distributions of alpha particles within

different layers of material. All inner surfaces of the detector are coated in TPB,

however, the layer beneath the TPB is ITO on fused silica for the cathode/anode,

and Teflon on the walls. The basic steps of the simulation are as follows and for sim-

plicity we will use NS to refer generically to a non-scintillating material (ITO-coated

fused silica or Teflon depending on the simulation geometry)1:

1. Distribute 210Po alphas in different configurations within material layers:

• Case A: alpha originate at the LAr-TPB interface

• Case B: alphas are uniform in TPB

1The code for both DarkSide-50 geometries can be found in Appendix B.
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• Case C: alphas originate at the TPB-NS interface

• Case D: alphas are uniform in the NS layer

• Case E (cathode): alphas originate at the bottom of the ITO layer

• Case E (walls): alphas have a specific distribution in the Teflon

2. Randomly assign each alpha an emission direction in 4π

3. Calculate the projected range for an alpha of the current energy in the current

material

4. Determine the track length in the current material (dmat) given the projected

range and emission direction

5. Determine energy lost to the current material given dmat

6. If the alpha enters another inner layer of material, repeat steps (3)-(5). If the

alpha enters an outer layer of material (LAr/NS), deposit the remaining energy

there

7. Convert the energy lost in scintillating materials to PE using given light yields

(LYα
LAr, LYα

TPB)

8. Smear S1 value according to a Gaussian distribution with a mean at the simu-

lated S1 value and σ = 4.5 ·
√
S1, as was done for the Princeton experiment

The material layers for the two simulation geometries are pictured in Fig. 6.11.

The values for the thicknesses come from Ref. [104].

Actually, the thickness of the TPB layer varies at different locations in the detec-

tor. On the cathode (230 ± 10) µg/cm2 of TPB was deposited at the center, and

(190 ± 10) µg/cm2 at the edge of the active volume. On the cylindrical walls (224

± 17) µg/cm2 of TPB was deposited at center height and (165 ± 20) µg/cm2 at

the top and bottom. For ease of simulation, one TPB thickness is used throughout:
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Figure 6.11. Details of the material layers for the simulated geometries of the walls
(top) and cathode (bottom) in DarkSide-50

230 µg/cm2. This approximation is valid since the variation in TPB thickness across

all regions of the inner surfaces is within the 25% thickness variation used in the

Princeton experiment simulations, and replicated for the DarkSide-50 geometry.

The ITO layer is of uniform 15 nm thickness on the inner cathode and anode

windows. The Teflon and LAr are considered to be ‘effectively infinite’ for the pur-

poses of the simulation. They are given thicknesses sufficient to contain any alpha

particle track that may enter them. We initially used the TPB light yield obtained

from the simulation of deposited Rn daughters in the Princeton experiment; LYα
TPB =

247 PE/MeV. However, after later comparison with the data, this value was increased

to 566 PE/MeV.
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Figure 6.12. Results of the simulation of the cathode geometry in DarkSide-50 (left)
with a zoom on the low-energy region (right)

6.4.1 Cathode Alphas

The results of the simulation of the DarkSide-50 cathode geometry are shown in

Fig. 6.12. The spectra are color coded by the starting distribution of the simulated

210Po alphas. At high energy, only the yellow spectrum corresponding to alphas on

top of the TPB layer has a true full deposition peak in LAr. The alphas appearing

in this region suffer no degradation and form a Gaussian peak ∼39000 PE. All other

spectra suffer an overall degradation and exhibit low energy tails of increasing am-

plitude in order of increasing starting depth (green, blue, violet, red, gray) in TPB

or NS materials. (Recall that LY α
LAr > LY α

TPB.) The red spectrum represents alphas

distributed uniformly in non-scintillating layers (ITO-coated fused silica) with some

maximum depth. The value of the maximum depth is simply used here to illustrate

how depth affects the resulting spectrum (red) in comparison to the fully extended

distribution (gray). The red spectrum has a wide, somewhat flat full deposition peak

with a left edge position set by the maximum depth in the material. The gray spec-
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trum exhibits no high energy peak, but rather a roughly flat distribution with an

endpoint at high energy.

In the low energy region, Fig. 6.12 (right), the yellow and green spectra exhibit

a full deposition peak in TPB at 4000 PE with a degraded tail that peaks at low

energies. The alphas originating from the TPB-ITO interface (blue) exhibit a full

deposition TPB peak exhibiting no degradation. This reflects the fact that alphas

originating from this position can only either deposit their full energy in the TPB or

deposit some energy in the LAr, producing an event at higher S1. The alphas origi-

nating from the bottom of the ITO layer (violet) exhibit a full deposition TPB peak

with a degraded tail decreasing in amplitude towards zero. The red and gray spectra,

corresponding to alphas originating from deeper within the NS materials are the only

two spectra that do not exhibit a clear full deposition TPB peak. These spectra have

very similar shapes, but are vertically offset from each other with increasing depth

corresponding to increased events at low energy.

6.4.2 Wall Alphas

The simulation of the wall geometry in DarkSide-50 is very similar to that just of

the cathode. The only difference is that the case representing alphas from the bottom

of the ITO layer has no equivalent on the walls since the Teflon is many times thicker

than the projected range of 210Po alphas. Instead, we simulate alphas from a specific

distribution of depths in the Teflon meant to mimic the deposition of 210Po into the

material by successive nuclear recoils of parent nuclei.

To construct the distribution we consider 210Pb plated out onto the surface of the

Teflon. The recoil of 210Bi and 210Po nuclei from beta decays drive the nuclei farther

into the material. Given that the beta particle emits isotropically in a beta decay,

and therefore so does the recoil of the daughter isotope, the resulting depth of the

daughter within the Teflon is drawn randomly from a distribution given by the PDF:
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π

2 dproj
cos

(
πx

2 dproj

)
, 0 < x < dproj (6.3)

where dproj is the projected range of the daughter nucleus in Teflon. The daughter

nucleus carries away very little kinetic energy from the beta decay, and therefore

has a short projected range. Realistic values of dproj produce a simulated spectrum

with negligible differences from alphas originating at the ITO-TPB interface. To

illustrate how a distribution of more significant depths effects the spectrum we take

large values of dproj corresponding to the unphysical case where the daughter nucleus

carries the full Q-value of the corresponding β-decay2. The starting depth of each

simulated alpha particle for Case E in the wall simulation is calculated by drawing

twice from Eq. 6.3; once for 210Bi and once for 210Po. The results of the simulation

of the DarkSide-50 wall geometry are shown in Fig. 6.13, color coded by the starting

distribution of the 210Po alphas.

In the high energy region the yellow, green, and blue spectra are identical between

the cathode and wall simulations (left panels of Figs. 6.12 and 6.13). Recall, these

spectra represent distributions within the TPB layer, which is identical between the

two simulations. The violet spectrum is shifted slightly downwards in energy because

of the increased starting depth due to the daughter recoil model. The maximum

depth of alphas in the special distribution is 58 nm, which is ∼ 4× the thickness of

the ITO layer. The red spectrum is identical to the gray spectrum from the cathode

simulation (Fig. 6.12).

In the low energy region pictured in the right panels of Figs. 6.12 and 6.13, the

yellow, green, and blue spectra are the same. The violet spectrum for the wall simu-

lation has a wider full deposition peak for TPB that exhibits an overall degradation

and a more populated low-energy tail. The red spectrum from the wall simulation,

2Based on SRIM output, dproj = 0.0287 µm for a ∼50 keV 210Bi recoil and dproj = 0.293 µm for
a ∼1.2 MeV 210Po recoil.
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Figure 6.13. Results of the simulation of the wall geometry in DarkSide-50 (left)
with a zoom on the low-energy region (right)

corresponding to alphas uniformly distributed in the Teflon, has no real full deposi-

tion peak for TPB due to the numerous starting depths of alphas in non-scintillating

Teflon.

6.5 Comparing to DarkSide-50 Data

As evident in Fig. 4.17, the S1 spectrum of 210Po alphas exhibits a crystal ball

shape indicative of energy degradation due to alphas traversing a thin layer. A unique

characteristic of 210Po events in DarkSide-50 is that 99% of the time, they are missing

their S2 signal (see Fig. 4.20). This makes it difficult to reconstruct accurate position

information for the majority of 210Po events.

However, we can split the population into those with and without S2 and examine

their implied positions. Fig. 6.14 shows the 2-dimensional position (r versus tdrift)

for 210Po events with a valid S2 facilitating position reconstruction. The exact cuts
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applied to fill the plot are: is alpha, valid S2, and 600 PE < S1 < 39210 PE. The

majority of 210Po events are located on the cathode, with the second most numerous

population at the top of the detector with a concentration at large radius. There are

a handful of events spread throughout the bulk, which are likely contamination from

the population of 222Rn, which has some overlap in energy around 39210 PE. 210Po

alphas with S2 come almost entirely from the top and bottom planes of the TPC with

almost no events on the cylindrical walls at intermediate tdrift values. This is likely

due to the wall effect causing the suppression of S2 pulses for events on the walls,

rather than a lack of contamination at that location.

We can plot the S1 spectra for the populations in Fig. 6.14. We select events from

the cathode by requiring tdrift > 370 µs, events from the top of the detector with

tdrift < 50 µs and r < 17 cm, and events from walls near the top of the detector with

tdrift < 50 µs and r > 17 cm. The resulting S1 spectra are shown in Fig. 6.15. Note

that in making the spectra we are now including the ROI from the WIMP search

(S1 < 600 PE). This region and the background estimates within it are discussed

in detail in Chapter 7. Also note that the cut at higher energies (S1 < 39210 PE)

removes some 210Po events from the upper edge of the distribution in order to remove

as many 222Rn events as possible.

The spectrum corresponding to 210Po events from the bulk at the top of the de-

tector (orange) appears to have a full deposition peak ∼38000 PE that is nearly

Gaussian, with a small degraded population on its left shoulder. The spectrum cor-

responding to 210Po on the cathode (green) exhibits the general degraded crystal ball

shape with a relatively sparse tail below 22000 PE. The spectrum corresponding to

210Po events at large radius near the top of the detector (yellow) exhibits a gaussian

peak in the same place as the orange spectrum, as well as a population of degraded

210Po events extending to zero. The green spectrum peaks at a lower energy than

the orange or the yellow. This is likely due to the breakdown of the TBA correction

164



Figure 6.14. Plot of tdrift versus r for 210Po events with S2 in DarkSide-50 data

to S1 very near the PMT arrays. Recall from Fig. 5.5 that the isotope bands corre-

sponding to 222Rn and 218Po bend towards lower energies at the top and bottom of

the TPC. Given our position selection for the cathode (tdrift > 370 µs) and the top

of the detector (tdrift < 50 µs), the events on the cathode are closer on average to

the nearby PMTs and therefore subjected more to the breakdown of the correction.

The lack of events in the tail of the green spectrum is likely a bias of the selection

of 210Po alphas with valid S2 pulses. Only alphas that leave surface materials and

deposit sufficient energy in the LAr produce ionization that reaches the gas pocket

to produce S2.

The 210Po events without S2 are harder to pinpoint in the TPC because we do

not have XY or tdrift information for those events. Instead, we rely on TBA as a

measure of z-position. Recall that a TBA value of ∼-0.3 corresponds to the cathode

and a value of ∼0 corresponds to the grid. Values outside of these are unphysical and

caused by the breakdown of the TBA variable very near either PMT array. Fig. 6.16
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Figure 6.15. Plot of the S1 spectra for 210Po alphas with S2 in DarkSide-50 data,
color-coded by position
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shows TBA versus fully corrected S1 for 210Po events without a valid S2 (specifically

passing is alpha, !valid S2, and S1 < 39210 PE). The horizontal stripes at TBA ∼0

and -0.3 correspond to events on the grid and cathode respectively. The population

of events with TBA ∼1 have all (or very nearly all) light collected in the top PMT

array (see Eq. 3.2). These are likely to be events that take place above the liquid-

gas interface. It is unlikely that these are alpha events in the gas pocket because

the scintillation produced there would have an S2-like time profile and would fail

our f90 requirement for alphas. Furthermore, the probability for 210Po to be in the

gas bulk, rather than on a surface, is small. The DarkSide-50 monte carlo group,

using a Geant4-based DarkSide Monte Carlo toolkit, have found that the agreement

between data and simulation is optimized with the inclusion of a condensed liquid

argon layer (100 µm thick) on the underside of the top fused silica window [105].

This facilitates the scintillation of 210Po alphas originating from the anode materials

(working outside-in there are layers of: fused silica, ITO, TPB, condensed liquid

argon).

Fig. 6.17 shows TBA versus S1 maximum fraction (S1MF), or the fraction of

light collected by the PMT that saw the most S1 light. Events occurring closest to

the PMT arrays produce higher S1MF values. Once again, the physical bounds of

TBA are [-0.3, ∼0] with S1MF values extending to ∼ 0.2 in the plot. After that,

events extend out of the physical TBA region with a linear relationship to S1MF or

1/S1MF depending on the extreme of the TPC considered. Events at the bottom of

the TPC have a maximum S1MF of 0.8. Events at the top of the TPC, however, have

a sizable population with S1MF ∼1 due to the more complicated optical geometry

of the liquid-gas interface, allowing for light to be confined to the top PMT array.

There appears to be a significant population of events with TBA corresponding to

the middle of the detector in z (-0.3 < TBA < 0) with low S1MF. Given that these
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Figure 6.16. Plot of TBA versus S1 for 210Po alphas without S2 in DarkSide-50
data

events are missing S2 and must therefore be coming from surfaces, these are likely

events originating on the cylindrical walls of the TPC.

We make selections of 210Po events without S2 using the cuts defined by the red

dashed lines in Fig. 6.17:

• TBA < -0.3; unphysical cathode TBA

• -0.3 < TBA < -0.2; physical cathode TBA

• -0.2 < TBA < -0.075; physical center/wall TBA

• -0.075 < TBA < 0.1; physical anode TBA

• 0.1 < TBA < 0.7; unphysical anode TBA (1)

• 0.7 < TBA; unphysical anode TBA (2)
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Figure 6.17. Plot of TBA versus S1MF for 210Po alphas without S2 in DarkSide-50
data

For simplicity we refer to the entire top of the detector (grid, liquid-gas interface, gas

pocket, and anode) as ‘anode’ since at the moment we have no means of distinguishing

these different top positions. The spectra for the six selections are shown in Fig. 6.17.

The spectra for events with physical TBA values corresponding to the cathode

(green), the bulk/wall (yellow), and the top of the detector (orange) have similar

shapes. The spectrum from the bulk/wall has the highest full deposition peak with

the smallest width, and a flat distribution at intermediate energies that increases in

amplitude below 6000 PE. The spectra from the cathode and top of the detector

have full deposition peaks that are wider and generally more degraded than the

spectrum from the bulk/wall. These two spectra exhibit a slow decrease moving

away from the full deposition peak at intermediate energies. At low energies the

spectrum corresponding to the cathode is very similar to the bulk/wall, with the

spectrum trending upwards below 6000 PE. The spectrum corresponding to the top
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Figure 6.18. Plot of S1 spectra for various selections of events from Fig. 6.17

of the detector exhibits less of a decrease at intermediate energies, but a steeper

increase in events at energies below 9000 PE.

The spectra for events with unphysical TBA are interesting. Those corresponding

to events with unphysical TBA on the cathode (blue) and the 1st category of events

with unphysical TBA at the top of the detector (red) exhibit similar behavior at

high energy. Neither exhibits a full deposition peak in the way that the physical

spectra do, instead exhibiting a somewhat flat distribution across intermediate and

high energies. The red and blue spectra are the same below 6000 PE.

The spectrum corresponding to the 2nd category of events with unphysical TBA

on the top of the detector (brown) exhibits the strangest behavior. Almost all events

are concentrated below 7000 PE with a steep rise towards zero. There are a handful

of events extending to high energy with decreasing numbers and no trace of a full

deposition peak. Given the very high S1MF value for these events (∼1), they are likely
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coming from directly under the top PMTs. The concentration of these events at low

energy indicated that they may be scintillating predominantly in TPB and depositing

little to no energy in the thin LAr film on the underside of the top window.

In general, it is likely that the spectra with unphysical TBA values are produced

by events deeper within the materials covering the top and bottom PMT arrays.

Due to total internal reflection in these surface layers, more light is directed into the

nearby PMTs. The events with physical TBA values likely deposit some energy in

the LAr, hence their enhanced populations near the full deposition energy.

In order to best compare data with simulation results, we construct overall spectra

for 210Po alphas originating from areas in DarkSide-50 that are consistent with either

the simulated cathode or wall geometries. We create three combined spectra, detailed

below:

• Combined spectrum for 210Po events on the cathode consists of:

– 210Po events with S2 on the cathode (green spectrum in Fig. 6.15)

– 210Po events without S2, with physical TBA corresponding to the cathode

(green spectrum in Fig. 6.18)

– 210Po events without S2, with unphysical TBA corresponding to the cath-

ode (blue spectrum in Fig. 6.18)

• Combined spectrum for 210Po events on the walls consists of:

– 210Po events with S2 at large r near the top of the detector (yellow spectrum

in Fig. 6.15)

– 210Po events without S2, with physical TBA corresponding to the bulk/walls

(yellow spectrum in Fig. 6.18)

• Combined spectrum for 210Po events at the top of the detector consists of:
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– 210Po events with S2 from the bulk at the top of the detector (orange

spectrum in Fig. 6.15)

– 210Po events without S2, with physical TBA corresponding to the anode

(orange spectrum in Fig. 6.18)

– 210Po events without S2, with unphysical TBA corresponding to anode

population (1) (red spectrum in Fig. 6.18)

– 210Po events without S2, with unphysical TBA corresponding to anode

population (2) (brown spectrum in Fig. 6.18)

The spectrum for the top of the detector is included to complete the discussion of 210Po

events on surfaces in DarkSide-50 data. However, due to the complicated geometry

at the top of the detector (the gas pocket and hypothesized condensed LAr layer on

the underside of the anode), we do not compare the top spectrum with any simulated

spectra. The combined spectra for 210Po alphas from the cathode (green), the top of

the detector (orange), and the walls (yellow) are shown in Fig. 6.19.

The green and orange spectra have similar shapes at high and intermediate energy,

with a very smeared full deposition peak. At low energy the orange spectra increases

more sharply. The yellow spectrum has a sharper full deposition peak at slightly

higher energy. Note that all of the spectra in Fig 6.19 lack full deposition TPB peaks.

The yellow and orange spectra exhibit a kink around 5000 PE. This motivated the

increase to the TPB light yield, speculating that the TPB scintillation may appear

as a kink in the spectrum rather than a full deposition peak.

As previously demonstrated in Figs. 6.15 and 6.18, events on the top and bot-

tom of the detector have overall lower S1 values leading to full deposition peaks

shifted slightly downwards. We also discussed previously that this is likely due to the

breakdown of the TBA correction to S1 for events very near the PMTs. In order to

accurately compare the S1 spectrum for simulated events in the cathode geometry
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Figure 6.19. Plot of the combined spectra of 210Po alphas from the cathode, the
top of the detector, and walls in DarkSide-50 data

to data, we want to include this breakdown of the TBA correction in the simula-

tion. This is implemented in the simulation by appropriately degrading a portion of

events. The degradation is implemented as S1 = (1 − 0.1 · rand)S1, where rand is

a randomly generated number between 0 and 1. However, not all events suffer from

this degradation. The breakdown of the TBA correction occurs for events very near

the PMTs where TBA depends heavily on whether the event occurs directly above

a PMT or above the Teflon reflector between PMTs. Events occurring over the re-

flector have significant light reflected upwards leading to a smaller TBA value and an

inappropriate S1 correction. The radius of the TPB layer on the cathode is 35.9 cm

and there are 19 3” PMTs with 64 mm effective photocathode diameter. Therefore

the surface area of reflector between PMTs is 65.6%. We apply the energy decrease

to 65.6% of events, selected at random.
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Figure 6.20. Comparison of data and simulation for 210Po alphas on the cathode in
DarkSide-50

Fig. 6.20 shows the best combined simulated cathode spectrum compared to the

green combined cathode spectrum from Fig. 6.19. The combined cathode simulation

spectrum is constructed from the spectrum of alphas uniformly distributed in TPB

(green, Fig. 6.12, 60% weight) and the spectrum of alphas uniformly distributed in

NS layers (gray Fig. 6.12, 40% weight). Recall that we place a hard cut at S1 <

39210 PE for our data selection, so an excess of simulated events above this value can

be ignored. The simulation agrees with the data, except for an excess of simulated

events at intermediate energies ([15000, 27500] PE) and the lack of a full deposition

peak from TPB.

Fig. 6.21 shows the best combined simulated wall spectrum compared to the yellow

combined wall spectrum from Fig. 6.19. The combined wall simulation spectrum

is constructed from the spectrum of alphas uniformly distributed in TPB (green,
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Figure 6.21. Comparison of data and simulation for 210Po alphas on the wall in
DarkSide-50

Fig. 6.13, 75% weight) and the spectrum of alphas uniformly distributed in Teflon

(red Fig. 6.13, 25% weight). The simulation agrees with the data, except for the

region [30000, 38000] PE and the lack of a full deposition peak corresponding to

TPB.

Overall, the agreement between data and simulation is pleasing given the rudimen-

tary simulation method. We have tuned the value of the TPB light yield to LYα
TPB

= 566 PE/MeV. However, due to the lack of a full deposition peak corresponding to

TPB scintillation and the general insensitivity of the spectral shape to the value of

LYα
TPB, this value should not be take too seriously. Our simulations are able to repli-

cate the upwards trend in the S1 spectrum towards zero energy (S1 < 2000 PE). As

we will see, this is particularly interesting for discussion of WIMP search background,

as we have no other evidence that these low-energy nuclear recoil events are in fact
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tied to the higher energy 210Po population. This simulation provides an argument for

labelling these low energy events as part of the alpha population.

The data prefers the presence of 210Po contamination that is deeper than the TPB

layer, but also requires some contamination in the TPB itself in order to mimic high

energy behavior. However, we cannot simply conclude that our Teflon, ITO, and fused

silica are contaminated. Work performed by members of the DEAP collaboration has

shown that a deposited TPB layer can exhibit considerable roughness, with needle

like structures on the surface [106]. They have also found that the effect of this

TPB roughness, which is computationally expensive to model, can be approximated

by a distribution of increased alpha particle depths within the layer [107]. Due to

this degeneracy, we cannot say whether the observed preference for deeper starting

depths is a true reflection of alpha contamination position, or is rather the result of

TPB roughness that was not modeled. The fact that the data requires the presence

of some alphas in the TPB layer to model the high energy region of the spectrum

may indicate that we are observing the effect of surface roughness rather than a

distribution of alphas in the material layers underneath.
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CHAPTER 7

S1-ONLY + S2-ONLY PILEUP BACKGROUND

From August 2015 to October 2017, we acquired 532 live-days of underground

argon data and proceeded with the first blind WIMP search analysis of DarkSide-50

data. The blinding was imposed by hiding two categories of events from analyzers:

events with S1 and f90 within a defined blinding box, and events chosen at random

with a probability of 2 × 10−5. The randomly selected events were included to obscure

the counting of possible candidate events in the final analysis stages. The blinding

box is denoted by the solid red line in Fig. 7.1 superimposed on data from the fully

open dataset from Ref. [62] before application of any analysis cuts. Note that this

data is not included in the 532 live-days accumulated for the blind analysis. The

S1 vs f90 region of interest (ROI) selected at the completion of the blind analysis

appears in Fig. 7.1 as a dashed red line. It is included in order to illustrate that a

conservatively large blinding region was established to facilitate the opening of test

regions before unblinding.

The goal of the blind analysis was to design a set of analysis criteria (cuts) that

suppress backgrounds to acceptable levels, without inspection of potential WIMP

candidate events. We chose 0.1 events of expected background from all sources as the

threshold for opening the blinding box. The sources of background for this analysis

were radiogenic and cosmogenic neutrons, electron recoil backgrounds from bulk con-

taminants, Cherenkov plus scintillation events, surface background events with S2,

and surface background events producing a pileup background. The first four cate-
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Figure 7.1. The blinding box (solid curve) and the eventual analysis box (dashed
curve) for the 532-day analysis imposed on data from Ref. [62]

gories are discussed in the 532-day publication [56] and in Chris Stanford’s thesis [91].

The last item is the focus of this chapter.

The possibility of a WIMP search background created through pileups was first

explored in the context of degraded 210Po events on surfaces. We have seen in previous

chapters that these alpha events can be sufficiently degraded in energy to fall into

the WIMP S1 ROI, and that many 210Po events lack S2 pulses eliminating our ability

to reject these events based on their surface location. We became concerned as to

whether these S1-only 210Po events could pick up an S2 by some accidental mechanism

producing an event that would pass WIMP event selection criteria.

For the purposes of the 532-day blind analysis, we loosened our definition of S1-

only events to be divorced from their original identification with the degraded tail

of 210Po. The WIMP box from our 70 live-day analysis is bound by S1 limits of

60 and 460 PE, a region that would require significant degradation from the peak

energy of the Po decay (∼ 39000 PE). Though it is certainly possible for the S1-

only events in the NR band to be degraded 210Po alphas, we do not have sufficient
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evidence to identify them all as such. We can only say that the simulations detailed

in Chapter 6 indicate that surface alpha decays are capable of producing low energy

spectra similar to that observed in DarkSide-50. Furthermore, a generalized form of

this background is of equal concern; can S1-only events from any source pick up an

S2 by some accidental mechanism? What we refer to as S1-only events for the rest of

the document are more generally events from the WIMP box that have only a single

pulse; an S1.

The previous definition of the fiducial volume, taken from the 70-day analysis,

required 40 µs < tdrift < 334.6 µs. This provides a 294.6 µs-long window for an

S2-only event to pileup within the 440 µs acquisition window of a previously triggered

S1-only event. This pileup would result in a composite event passing all of the WIMP

cuts for S1, S2, and fiducialization. So far, in a 50 live-day WIMP search utilizing AAr

and a 70 live-day WIMP search utilizing UAr we have seen no such pileup background

events. We now quantify the probability to see background events from the pileup of

an S2-only event with an S1-only event as a function of exposure.

Because the S1-only events of interest are within the blinding region of the 532

live-day dataset (from this point referred to as the ‘532d dataset’), we must use the

fully open 70 live-day (70d) dataset from Ref. [62] to inform our predictions. The

majority of this chapter uses the SLAD v2.3.3 70d dataset. A separate extrapolation

and prediction is made in Sec. 7.5.2 using a fully blinded SLAD v3.0.0 532d dataset.

Final predictions made prior to the official unblinding with the full suite of analysis

cuts applied to a SLAD v3.3.0 70d dataset are detailed in Sec. 7.7.

7.1 S2-Only Events

This theorized pileup background is only a threat if there are indeed standalone S2-

like pulses produced in the detector that might occur accidentally within the window

of a previously triggered event. In searching for random S2-like pulses we discovered
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a category of events that will be referred to as S2-only events. These events are

triggered by pulses that pass the WIMP requirements for S2: S2 f90 < 0.2 and

S2xycorr > 100 PE. The S2-only events fall into three categories:

• Small, or echo-like, S2s

• Normal S2s without a corresponding S1

• Events with S1+S2 so close together that DarkArt cannot resolve them as sep-

arate pulses

7.1.1 Selection of S2-Only Events

S2-only events are events that, when coincident with an S1-only event, would

produce a WIMP-like event. Therefore they must satisfy data quality cuts, veto cuts,

all WIMP cuts concerning S2, and have a number and timing of pulses that would

ultimately be consistent with a single scatter event:

• basic cuts

• veto cuts

• S2-focused WIMP search cuts

– S2 f90 < 0.2

– S2xycorr > 100 PE

• Single scatter consistent

– npulses = 1

– OR npulses = 2 and second pulse has timing of S3

– OR npulses > 1 and t[p1]− t[p0] > 245.8 µs
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The pulse cut is meant to reflect the single scatter cut applied during the dark

matter search. It requires that an event have either two pulses, or three pulses where

the third pulse is separated from the second by the maximum drift time. This accepts

events where S2 was energetic enough to stimulate ejection of an electron from the

cathode via the photoelectric effect, which then drifts the full length of the detector

before producing a small signal in the gas pocket (S3). The pulse cut applied to

S2-only events captures the single scatter condition (when coincident with a previous

S1-only event) in the first two conditions. The third condition is intended to average

the number of multi-pulse S2-only events that will pass the single scatter cut because

they begin far enough into the data acquisition window that the later pulses fall off

the end. 1

Using the 70-day UAr dataset from Ref. [62] we can examine the number of events

that pass the S2-only criteria, see Figure 7.2. There are 182140 events surviving all

S2-only cuts. More importantly, the rate of these events is constant throughout the

70-day dataset at 2544 S2-only events per day, shown in Figure 7.3.

7.1.2 Types of S2-Only Events

As mentioned in the introduction, there are three types of pulses observed to

trigger an S2-only event: small or echo-like S2s, normal S2s without a corresponding

S1, and an S1+S2 so close together than DarkArt cannot resolve them as individual

pulses. Before we discuss the mechanisms that produce each of the three types, let’s

recall the characteristics of a typical S2.

1The length 245.8 µs was chosen based on the fiducial window (40 µs < tdrift < 334.6 µs), the
data acquisition window (-13.2 µs < tdrift < 426.8 µs), and the fact that S1 pulses usually begin
around -6.2 µs. We assume that the S2-only events fall uniformly in the fiducial window, the validity
of which is discussed later. The middle of the fiducial region of an event with S1 at -6.2 µs is 181 µs.
From this mean position, the minimum value of t[p1] − t[p0] for which the second pulses exits the
event window is 426.8 µs - 181 µs = 245.8 µs.
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Figure 7.2. S2-only events passing consecutive cuts for the 70-day dataset

Figure 7.3. Livetime normalized S2-only event rate over the 70-day dataset
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Figure 7.4. Example S2 pulse shape taken from Ref. [77] with no smearing (black),
and Gaussian smearing (green)

S2s are produced when electrons that have escaped recombination are drifted to

the gas pocket, where they are accelerated to produce light through electrolumines-

cence. The scintillation mechanism is the same as in liquid argon; excited dimers

form in either a singlet or triplet state, decaying with characteristic lifetimes of 11 ns

and 3200 ns respectively. The basic S2 pulse shape is described by the convolution

of a uniform distribution with a two-component exponential. There is an additional

gaussian smearing effect that arises from longitudinal diffusion of electrons as they

drift through the liquid argon (LAr) to reach the gas pocket (GAr). Events from very

near the top of the detector have the basic S2 shape, events from the bottom of the de-

tector have the most Gaussian smearing. To a limited extent, one can infer the rough

z-position of an event in the detector by the amount of Gaussian smearing present in

the S2 pulse. Examples of S2 pulse shape with and without Gaussian smearing are

shown in Figure 7.4. A specific study of longitudinal diffusion in DarkSide-50 can be

found in Ref. [74].
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Figure 7.5. An example of an S2-only event categorized as a ‘Small or Echo-Like
S2’

We have split the S2-only events into three categories, but the first two categories

(small or echo-like S2s and normal S2s) may be artificial. The reasons for this are

discussed below.

Small or Echo-Like S2s

These S2-only events are low statistics, generally around a single photoelectron in

peak amplitude. They range from having very little timing structure to having the

general structure of a statistically sparse S2. The reason they form a category apart

from ‘normal’ S2s is that without the preceding pulses we have no definitive way of

knowing whether the pulse is an S1-echo, S3 (S2-echo), or S2 from a low energy event.

An example of an event from this category is shown in Figure 7.5. The mechanism

for these standalone S2s and/or echoes is discussed in the next subsection.

184



Figure 7.6. An example of an S2-only event categorized as a ‘Normal S2’

Normal S2s

These S2-only events look like normal S2s, without an associated S1. Only a

small subset of all S2-only events from the 70d dataset were visually inspected, but

all inspected ‘normal S2’ events had the idealized S2 pulse shape indicative of an event

occurring near the top of the detector, see the example in Figure 7.6. No standalone

Gaussian-diffused S2s were observed in this category.

It is strange that these standalone S2s have a non-diffused shape, which typically

indicates an event with a drift time of < 3 µs, yet there is no S1 in the earlier portion

of the window. This may be explained by a cross-over of events from this category

with the category we will discuss next, but first we will explain the mechanism for a

trigger on a true standalone S2.

Our basic cuts include the requirement: livetime + inhibittime > 1.35 ms. To

explain this cut we must recall the details of our data acquisition (DAQ). When an

event triggers the DAQ, a window of 440 µs is recorded and saved. After the data

acquisition window closes, the detector is inhibited from triggering again for a period
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Figure 7.7. A timeline detailing the definition of livetime and inhibittime in our
data acquisition scheme

of time that is assumed to be fixed at 837 µs. When the detector is no longer inhibited

we start counting livetime until another event triggers the DAQ. A timeline diagram

of this process can be found in Figure 7.7 (reproduced from Fig. 3.6 in Sec. 3.4).

We are blind to anything that happens in the inhibit window. From a DAQ

perspective, there is no way to avoid triggering on an S2, S1-echo, or S3 caused by

an S1 or S2 that occurred within the inhibit window. However, these triggers on

S2/S3 can be rejected in post-reconstruction analysis. This is the purpose of the

livetime+ inhibittime cut, which was designed to be easily interpretable as the time

elapsed since the previous event. The trouble with this cut is that it assumes a

constant inhibittime for all events. The cut value of 1.35 ms is chosen so that when

the typical inhibittime is subtracted off, a minimum value is imposed on the livetime

that is greater than the full drift in the detector. This condition is sufficient to reject

triggers on S2/S3, unless an event has an unusually long inhibittime. Figure 7.8 shows

the spectrum of inhibittime for S2-only events, indicating the presence of long-inhibit

events. A dashed gray line indicates the minimum value of inhibittime for which the

livetime + inhibittime cut fails (corresponding to livetime < tdriftmax). S2-only

events triggered by a true standalone S2 or echo arise through this mechanism.
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Figure 7.8. Inhibittime spectrum for S2-only events passing all cuts, including
livetime+ inhibittime

S1+S2 Unresolved by DarkArt

This last category is comprised of real physics events. The PulseFinder module in

DarkArt has trouble resolving pulses with a separation of up to 3 µs, instead lumping

S1 and S2 into a single ‘pulse’. The resulting ‘pulse’ has very low f90 because of the

late S2 and easily passes the minimum size requirement on S2 pulses. These events are

normal physics events occurring in the top portion of liquid in the detector, including

liquid above the grid and even in the gas pocket. The only reason they end up

classified as S2-only events is the previously mentioned deficiency in the pulse finding

algorithm. Figure 7.9 shows an example of such an event.

This category of events requires some discussion, as it is very likely that it forms

a spectrum that bleeds into the other two categories. There are several isotopes

confirmed to be present in the detector that we expect to be uniformly distributed

throughout the volume, including 85Kr, 39Ar and 222Rn. These bulk events can occur

in any part of the liquid, including the liquid-gas interface, and can also occur in
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Figure 7.9. Example of an S2-only event consisting of a real physics event where S1
and S2 are unresolved by DarkArt

the gas pocket. The gas pocket is constantly circulated, its volume boiled out of the

liquid, so we can expect similar contamination in the gas as the liquid. We also expect

alpha decays from isotopes on the grid.

We expect a continuous and flat spectrum of separations between the unresolved

S1+S2 pulses arising from bulk contaminants. For events occurring at the liquid-gas

interface or in the gas pocket we may completely lose the S1, as there is no separation

between S1 and S2. For this reason it is likely that the ‘normal’ S2s with the basic S2

pulse shape are really physics events from the very top of the detector. Unfortunately,

since the S1 is overlapped by the S2 in this case, it is impossible to say for sure.

Similarly, the small/echo-like S2s could very well be low-energy physics events

from the top of the detector with correspondingly low numbers of photoelectrons.

Their pulse shape is sparse and it is possible that the collections of photoelectrons at

the beginning of the pulse are actually S1. However, statistics are low.
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It is likely that the three categories laid out here are artificial. However, they are

introduced this way because this is the way they are seen by our analysis algorithms;

a standalone S2 looks like a standalone S2 regardless of whether it was produced by a

real physics event near enough to the top of the detector for S2 to hide S1. We have

no way of distinguishing this case from an S2 produced after an S1 that was lost due

to a fault of the trigger or data acquisition.

These categories were defined by looking at a number of raw waveforms by eye.

From this examination it is clear that the identifiable unresolved S1+S2 pulses domi-

nate the S2-only events. That being said, we do not at present have cuts that can pick

out the different categories as well as the naked eye. In a later section we describe

cuts proposed to tag S2-only events, which will target the unresolved S1+S2 pulses.

A more rigorous estimation of the relative abundance of the different categories will

be discussed there.

7.2 S1-Only Events

As previously mentioned, S1-only events were originally considered to be heavily

degraded 210Po events. However, we do not have sufficient evidence to say that these

low-energy events belong entirely to that distribution. We generalize and define an

S1-only event to be any nuclear recoil-like single-pulse event passing:

• basic cuts

• veto cuts

• S1-focused WIMP cuts

– S1 start time

– S1 not saturated

– 60 PE < S1 < 460PE
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– f90 > 90% C.I. DM box curve

– Random S1 maximum fraction (S1MF rndm)

• npulses = 1

The random S1 maximum fraction (S1MF rndm) cut is the only altered version

of a WIMP search cut, the rest are applied exactly as they would be to a normal

single-scatter event. The modification is necessary because these theorized pileup

background events have an ill-defined tdrift. This quantity has no physical meaning

in the case of a pileup and does not exist when we consider the individual ingredients;

S1-only and S2-only events.

The true S1MF cut is applied to reject Cherenkov events emitting light in the

fused silica windows located in front of the PMTs. It rejects any event where a single

PMT sees a fraction of the total light surpassing a threshold defined as a function

of tdrift and S1 for the event in question. Though this cut discriminates on S1, it

requires an S2 to define its threshold. In order to apply an approximate version of

this cut to the S1-only events, we must assign them a fictional tdrift value. This is

done by drawing from a uniform distribution between the bounds of the fiducial cut:

[40, 334.6] µs. Two assumptions are implicit here:

• That the S2-only events will pile up uniformly in the fiducial window of an

S1-only event. Given that the S2-only events are predominantly real physics

events from the top of the detector and therefore perfectly random, this is a

reasonable assumption.

• That any S2-only event that piles up within an S1-only event will do so in the

fiducial window and not outside of it. The reason for this is to keep the sample

size for these events as large as possible. When applying cuts to the individual

populations we assume that, were any of them to pileup, they would do so
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Figure 7.10. S1-only events passing consecutive cuts for the 70-day dataset

passing the fiducial cut. The probability of this happening will be dealt with in

a later calculation.

Using the 70-day UAr dataset we can examine the number of events that pass

the S1-only criteria, see Figure 7.10. There are 905 events surviving all S1-only cuts.

More importantly, the rate of these events is constant throughout the 70-day dataset

at ∼12 S1-only events per day, shown in Figure 7.11.

7.3 Predicting Pileup Probability

We want to know, given a trigger on an S1-only event, the probability that an S2-

only event will occur within the 296.4 µs-long fiducial window. This can be calculated

easily with Poisson statistics, provided that we know the average rate of the events

involved, which we do, and that they occur independently of each other, which they

should. Certainly, the S2-only events that are real physics events from the top of the

detector are independent. We make the assumption that this type of S2-only event has

a high enough relative abundance to ensure the validity of Poisson statistics. True
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Figure 7.11. Livetime normalized S1-only event rate over the 70-day dataset

triggers on standalone S2s (S3s) may violate our assumptions, since they depend

on a preceding S1 (S1 and S2) and may be biased towards the beginning of an event

window. However, the only known production mechanism for these standalone S2s are

long-inhibit events, and applying an additional requirement to correct the deficiency

in the livetime+ inhibittime cut removes only 11 events out of 182140. At such small

numbers, we consider them negligible.

Poisson statistics tells us that the probability for an S2-only event to pileup in the

window of a previously triggered S1-only event is given by:

PS2(k) = e−λ
λk

k!
(7.1)

where k is the number of occurrences of S2-only events in the interval, and λ is the

average rate of S2-only events with respect to the interval. Note that this requires

us to convert the rate extracted from the 70-day dataset, and measured in events per

day, into events per 296.4 µs interval.
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If we also define 〈S1only〉 as the expected number of S1-only events in a dataset

of a given length, we can calculate two quantities of interest:

Nexpected = PS2(1) · 〈S1only〉 (7.2)

P≥1event = 1− PS2(0)〈S1only〉 (7.3)

where Nexpected is the number of expected pileup events and P≥1event is the probability

to see at least one pileup event.

As an example, for an exposure time of one live-year, given the rates calculated

from the 70-day dataset (12 S1-only events per day and 2544 S2-only events per day),

we expect 0.039 pileup events with a probability of 0.038 to see at least one such event.

For a three live-year exposure these numbers increase to 0.12 and 0.11 respectively.

The full background budget for the 532d WIMP search is 0.1 events from all sources.

It is clear that this background becomes non-negligible as we continue to accumulate

data.

7.4 Reducing the Pileup Background

We would like to reduce Nexpected and P≥1event as much as possible, which requires

discrimination power against the ingredients of a pileup event; S1-only and S2-only

events. There are three ways to attack a pileup background event:

• Tag the S1 as belonging to an S1-only event.

• Tag the S2 as belonging to an S2-only event.

• Tag the combination as a pileup event.

The second point is the easiest to achieve. This is because a large portion of S2-only

events, the unresolved S1+S2 pulses, are topologically very different from a typical

S2.
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7.4.1 Discriminating against S2-Only S2s

Livetime Cut

Earlier we discussed the mechanisms that give us S2-only events, one of which was

long inhibittime events. Our livetime + inhibittime cut was designed to be easily

interpretable as the time elapsed since the previous event. Unfortunately, whenever

inhibittime exceeds a threshold, livetime can be short enough for us to accept a trigger

on an S2 or S3 pulse in post-reconstruction analysis. We can patch this deficiency by

additionally requiring livetime > 400 µs, a value greater than the full drift time. This

additional minimum livetime cut removes only 11 events when applied after all other

cuts in Figure 7.2. We will refer to this cut throughout the rest of this document as

the LT Min Cut.

S2 Pulse Shape Cut: I90/I1 vs I1

This cut targets the difference in prompt signal between an unresolved S1+S2

pulse and a typical S2, see Figure 7.12. It can be thought of as a modified version of

f90 vs S1, only in this case fixed int1 is replaced by the 1 µs integral. I90/I1 is the

integral over 90 nanoseconds divided by the integral over 1 microsecond. Figure 7.13

shows the I90/I1 vs I1 parameter space for S2-only events (blue) and S2s from nuclear

recoil events from an AmBe calibration dataset (black). The red curve, C(x), was

chosen by eye to trace the edge of the black points and is described by the equation:

C(x) = e
2.5−x

4 + 0.1 · e
2.5−x
400 + 0.2 · e

2.5−x
60

valid for x = I[1 µs] < 500 PE.

We initially considered a one-dimensional cut utilizing only I90/I1. However, a

one-dimensional cut is not sensitive against unresolved S1+S2 pulses where the S1

and S2 are separated by less than 1 µs, in which case the 1 µs integral picks up the

beginning of S2 and I90/I1 is driven down artificially. By plotting I90/I1 vs I1 we
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Figure 7.12. Comparison of a pulse containing an unresolved S1+S2 (top) with a
typical S2 from an event in the middle of the detector (bottom)
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Figure 7.13. I90/I1 vs I1 for S2-only events (blue) and AmBe nuclear recoil S2s
(black)

remain sensitive to these low-separation S1+S2 pulses because they still contain much

more light in the first 1 µs than a typical S2.

The proposed cut, requiring that WIMP-candidate S2s fall below the red curve

in Fig. 7.13, has an S2-only rejection factor of 7.1 and a nuclear recoil acceptance of

99.97%. Acceptance is calculated from AmBe data as the number of events passing

the S2 pulse shape cut after all other WIMP search cuts are applied, except for veto

cuts (recall this is a neutron calibration dataset). We will refer to this cut throughout

the rest of this document as the S2 Shape Cut.

This S2 Shape Cut cut appears to be unbiased as a function of S1 within errors.

Figure 7.14 shows the fraction of rejected AmBe nuclear recoil S2s passing all WIMP

cuts except for veto cuts, but rejected by the addition of the S2 Shape Cut as a

function of S1.
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Figure 7.14. Fraction of AmBe nuclear recoil S2s rejected with the addition of the
S2 pulse shape cut as a function of S1 binned by 4 PE

S2 Maximum Cut

This cut also targets unresolved S1+S2 pulses, which on average contain more

photoelectrons than a typical S2. We already require a minimum size for S2 in the

WIMP search: S2xycorr > 100 PE. It is natural to include an upper bound as well.

The maximum S2 cut is designed on nuclear recoil S2s from AmBe data and shown

in Figure 7.15.

We propose requiring S2xycorr < 8000 PE. The S2 maximum cut has a rejection

factor of 1.00678, removing only 173 S2-only events in the 70-day dataset when ap-

plied after the S2 Shape Cut. However, many of these 173 events come from the

region in the upper left of Figure 7.13. These are events that would be cut in a

one-dimensional approach to the S2 pulse shape cut, but are untouched in the two-

dimensional approach in order to preserve nuclear recoil acceptance. This region of

the S2-only events is populated predominantly by small S2s, or possibly unresolved

S1+S2 pulses where S1 is composed of only a few photoelectrons and statistically

indistinguishable from the start of the accompanying, small S2.
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Figure 7.15. XY-corrected S2 for AmBe nuclear recoil S2s (black) and S2-only
events (blue)

The nuclear recoil acceptance for this cut is calculated from AmBe events to be

99.97%. Figure 7.16 shows the fraction of rejected AmBe nuclear recoil S2s passing

all WIMP cuts except for veto cuts, but rejected by the addition of the S2 maximum

cut as a function of S1. The S2 maximum cut appears unbiased as a function of S1

within errors. We will refer to this cut throughout the rest of the document as the

S2 Max Cut.

7.4.2 Discriminating Against Pileup Events as a Whole

So far the suggested additional cuts have focused on half of the composite pileup

background event; the S2-only events. We can get some extra discrimination power if

we consider how these composite pileup background events may differ from a normal

event as a whole. We touched on a possible handle earlier when we described the

need for an altered S1MF cut for the S1-only events; tdrift has no physical meaning

for these pileup events.
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Figure 7.16. Fraction of AmBe nuclear recoil S2s rejected with the addition of the
maximum S2 cut as a function of S1 binned by 4 PE

An S2-only event can pileup anywhere within the window of a previously triggered

S1-only event as long as the resulting tdrift is within the fiducial bounds. However,

this tdrift value may not have any correlation with the position of either the S1-only

event or the S2-only event. Keep in mind that the S1-only event and S2-only event

can happen in different places in the detector (for example an S1-only event from

the wall near the cathode and an S2 only event from the grid). Fortunately, we have

another handle on the z-position of an event that can be extracted from S1; TBA.

TBA vs tdrift Cut

For this cut we take advantage of the fact that for normal events, TBA and tdrift

are correlated. Pileup events, on the other hand, should have uniform tdrift values

that may not necessarily correlate with the TBA of their S1 pulse. To demonstrate

this, Figure 7.17 shows TBA vs tdrift for ER events (green) and S1-only events that

have been assigned a random tdrift from a uniform distribution within the fiducial

window (black triangles). Both event pools are taken from the 70-day dataset.
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Figure 7.17. ER events from the 70-day dataset (green) and S1-only events with
randomly assigned tdrift values (black triangles)

Figure 7.18. TBA vs S1 for ER events in the 50-day dataset
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Figure 7.19. XY and tdrift spectra for AmBe nuclear recoil events in the fiducial
region

We want to define a loose cut on the TBA vs tdrift spectrum of events for the

WIMP search, however, we must be careful. TBA spreads out at low S1, as shown in

Figure 7.18, so a naive cut will be biased against low energy nuclear recoils. To avoid

this issue we must apply the cut as a function of S1.

There is a further nuance to the definition of this cut; determining which event

sample is most relevant to the expected WIMP signal. Usually when designing cuts

involving pulse shape or energy we use nuclear recoils. However, when designing

volume cuts it can be more relevant that the event sample is spatially uniform than

nuclear recoil-like. Unfortunately our NR calibrations are performed using the CALIS

system, which produces events focused at the outer edge of the TPC and non-uniform

in tdrift, see Figure 7.19. On the other hand, we have a bountiful sample of 39Ar

electron recoil events in our 50-day AAr dataset that are perfectly uniform, see Fig-

ure 7.20.

The importance of using uniformly distributed events is shown in Figure 7.21,

where an O(2) polynomial fit performed on AmBe NRs is shown in red and a similar

fit performed on 39Ar events in background runs from a Kr campaign is shown in
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Figure 7.20. XY and tdrift spectra for 39Ar ER events in the fiducial region

violet. The data is AmBe NR data. The functions clearly disagree at low and high

tdrift. In this case it is better to use a uniformly distributed ER sample than a

non-uniform NR sample to define the relationship between TBA and tdrift.

The TBA vs tdrift cut is defined using AAr 39Ar events and the following proce-

dure:

• Define the mean line of the TBA vs tdrift distribution by fitting a TProfile of

the 2D plot with an O(2) polynomial like those shown in Figure 7.21:

TBAexpected = 0.0453611− 0.000636123 · tdrift− 8.66415 · 10−7 · tdrift2

• Make slices in S1

– 4 15 PE wide slices between [60, 120] PE

– 4 20 PE wide slices between [120, 200] PE

– 9 25 PE wide slices between [200, 425] PE

– 1 slice covering the rest of the range [425, 460] PE
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Figure 7.21. TBA vs tdrift for AmBe NRs with overlaid O(2) polynomial fits
performed on 39Ar from Kr background runs (violet) and the same AmBe data (red)

• For each slice, plot the difference between observed TBA and expected TBA

given an event’s tdrift value and fit the resulting distribution with a Gaussian

(see Fig. 7.22 for Gaussian fits to several representative slices of S1)

• Plot sigma versus the median S1 value for each gaussian slice in the previous

step and fit with a high order polynomial to extract sigma as a function of S1:

σ(S1) =
9∑
i=0

piS1i

The parameters (pi) are given in Table 7.1

• Define the cut to require ∆TBA = TBAobserved-TBAexpected < 3 σ(S1)

The resulting cut has an S1-only rejection factor of 1.3 and an acceptance for

AAr Ar-39 ERs of 99.73% by design. Furthermore, because we designed the cut as a

function of S1, it is unbiased in energy as demonstrated in Figure 7.23.
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Figure 7.22. Example Gaussian fits to the ∆TBA distribution for several represen-
tative S1 slices used in the design of a TBA versus tdrift cut

Figure 7.23. Fraction of rejected events from the additional application of the TBA
vs tdrift cut as a function of S1 binned by 4 PE
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Parameter Value
p0 0.332333
p1 -0.0074442
p2 1.21475E-4
p3 -1.25289E-6
p4 8.31789E-9
p5 -3.59726E-11
p6 1.00529E-13
p7 -1.75026E-16
p8 1.72256E-19
p9 7.31902E-23

Table 7.1. Summary of parameters in the equation describing the spread of the TBA
distribution (σ) as a function of event energy (S1).

7.4.3 Discriminating Against S1-Only S1s

There is an independent study by Chris Stanford aiming to mitigate alpha surface

backgrounds that produce both S1 and S2 signals. There were two such surface

events in the 70-day UAr dataset and one in the 50-day AAr dataset that failed the

fiducialization cut but were not located on the cathode. XY reconstruction tells us

that these events were located on the walls some distance above the cathode (though

one event failed XY reconstruction). If these events are located slightly above the

cathode it is plausible that others could end up within the fiducial region in tdrift.

Unless we fiducialize radially for future analyses, we will be vulnerable to this type

of event.

These events are energy-degraded nuclear recoils believed to be 210Po alphas trav-

eling through a TPB layer. As demonstrated in the Princeton experiment briefly

introduced in Chapter 6, alphas can directly excite TPB producing long-lived scintil-

lation with a lifetime on the order of 1 s [91]. By studying bismuth-polonium (BiPo)

coincidences from isotopes plated out on a TPB surface in a small LAr test chamber,

Chris has shown that 214Po alphas traveling through TPB can produce signals falling

within the DarkSide-50 WIMP box in the f90 vs S1 parameter space. These events
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also have long S1 tails characteristic of direct TPB excitation. Tagging these long

tails in DarkSide-50 provides a powerful handle to reject surface backgrounds.

To this end, a cut was introduced that measures the amount of late scintillation in

an S1 pulse. This is complicated by the fact that the S2 of a fiducial event can occur

anywhere from 40 µs to 334.6 µs after the S1. Since we are searching for long-lived

scintillation spread over the entire event window, our collection efficiency for this late

light is determined by the size of the window used, which is restricted by tdrift.

Chris developed a cut requiring that the amount of light occurring in a window

starting 10 µs after S1 start and ending 2 µs before the start of S2 be lower than

a threshold determined from Princeton experiment data. Events from the dedicated

experiment were used to populate a series of S1 vs tail PE histograms, sliced in tdrift.

The cut was designed to reject only a small fraction of neutron events, unbiased in

tdrift and S1. A line was fit to the 50th percentile points of each S1 bin, then the

line was raised to include 99% of neutron events. The tdrift slices were combined

to form a two dimensional S1 vs tdrift cut on the tail photoelectrons in S1. This

cut has an overall nuclear recoil acceptance of 99% calculated using AmBe NRs in

DarkSide-50. The long tail cut has a rejection factor of 1.17 when applied to S1-only

events after the proposed TBA vs tdrift cut.

7.5 Pileup Background Predictions

7.5.1 Using the S1/S2-Only Event Rates from the 70d Dataset

In the preceding sections we have established the rate of S1-only and S2-only

events in the 70-day dataset as well as a collection of additional cuts designed to

mitigate the composite pileup background. We now generate concrete estimates of

the predicted number of pileup events and probability to see at least one pileup event

as a function of exposure with and without additional cuts. Predictions are listed in
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Table 7.2, where additional cuts means: TBA vs tdrift, LT Min, S2 Shape, and

S2 Max.

Exposure [d] Before Additional Cuts After Additional Cuts
- Nexpected P≥1event Nexpected P≥1event

70 0.00751 0.00748 0.00081 0.00081
500 0.05364 0.05222 0.00575 0.00574

Table 7.2. Pileup background predictions as a function of exposure length using the
S1-only/S2-only event rates from the 70-day dataset

Given our requirement of < 0.1 events from all sources of background, it is clear

that potential pileup events represent an uncomfortable fraction of the allowed back-

ground at a 500-day exposure. The additional cuts reduce the pileup events by an

order of magnitude, lowering the number of expected events to an acceptable level.

7.5.2 Using the S1/S2-Only Event Rates from a Preliminary 500d Dataset

As we prepared for the analysis of 532 live-days of data, a preliminary (fully

blinded, SLAD v3.0.0) dataset was produced amounting to a 455 live-day exposure.

This dataset will be referred to as the 500d dataset. We saw in the 70d dataset that

the S1-only and S2-only event populations were constant as a function of time, so we

expect their rates to be consistent and constant in the more recent ∼500d dataset.

We can use the preliminary dataset to check event rates and to search for pileup

events in newly implemented pulser triggers.

S2-Only Rate

We apply the same cuts as described in Sec. 7.1.1 to the 500d dataset to select

S2-only events. Figure 7.24 shows the unaltered rate plot on the left, where a straight

line has been fit to the data representing 2066 S2-only events/day. The fit does not

visually represent the data, and there is a far-outlying point.
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The point near 460 days represents runs 17189 through 17338, a period plagued

by oscillations in the veto. In fact, the points at 275 and between 340 and 460 days

also include runs subject to veto oscillations and also exhibit a lower rate of S2-only

events. These points represent similar lengths of livetime, and have a ratio of (S2-only

events)/(all events passing basic and veto cuts) consistent with surrounding points.

The lack of events passing basic and veto cuts in these time periods, and by extension

the S2-only cuts, is likely due to an increased number of events failing the veto cuts

when the veto oscillations are present.

After removing the far-outlying point by hand, the fit aligns better with the data,

giving a rate of 2258 S2-only events per day, shown on the left of Figure 7.24. The

rate is lower than in the 70d dataset (2544 events/day), but appears to be constant

over the 500 live-days of data, neglecting the rate drops to due to veto oscillations.

After application of the additional LT Min, S2 Shape, and S2 Max cuts the 500d

S2-only event rate drops to 257 events/day, in line with expectations from the study

on the 70d dataset.

For completeness, a restricted fit to the [0, 250] day portion of the data yields

a rate more consistent with the 70d dataset; 2424 events/day. This restricted time

domain contains the highest points in the S2-only event rate. It is comforting that the

S2-only rate never exceeds that of the 70d dataset, allowing the predictions generated

from the 70d dataset to serve as an upper limit. We will use 2258 S2-only events/day

in upcoming calculations in order to fully represent the 500d dataset.

S1-Only Rate

Determining the S1-only event rate for the preliminary 500d dataset is more com-

plicated because the events of interest are hidden by the blinding box. However, we

can use a comparison region to infer the number of events in our S1 ROI. In this case

we are interested in the WIMP S1 ROI: [40, 460] PE, and we can use a comparison
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Figure 7.24. Rate of S2-only events in the preliminary 500d dataset before and after
removing a low-rate point by hand

region of [600, 6000] PE, which falls outside of the blinding box. All cuts to select

S1-only events are the same for this comparison except for the energy cut (we also

consider events with 600 PE < S1 < 6000 PE), and the f90 cut (f90 > 0.73 for S1 <

600 PE). We need an updated f90 cut because the dark matter box is only defined

up to 600 PE in S1; 0.73 is the value of the curve at the upper boundary in S1 (see

Fig. 7.1).

First we check that the shape of the S1 spectra of S1-only events is consistent in

the comparison region between the 70d and 500d datasets. Figure 7.25 shows the S1

spectra for the 70d dataset in black and the 500d dataset in violet. The 70d spectrum

is scaled so that the integral over the comparison region matches the 500d spectrum.

The shapes are consistent in the comparison region (recall that the violet spectrum

is truncated below 600 PE by the blinding).

We then use the relative number of events from the 70d dataset in the comparison

region and WIMP ROI to estimate the number of events in the 500d WIMP ROI

from the observed number in the comparison region.

N500d
ROI = N70d

ROI

(
N500d
comp

N70d
comp

)
= 973

(
687

134

)
= 4923
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Figure 7.25. S1 spectra for S1-only events in the 70d and 500d datasets where the
70d curve has been scaled so that integrals match in the comparison region: [600,
6000] PE

Assume a constant rate of S1-only events, this implies 10.8 S1-only events/day before

additional cuts. Again, this is slightly lower than the 12 events/day observed in the

70d dataset. If we assume the same TBA vs tdrift rejection factor as for the 70d

data, we can expect 8.3 S1-only events/day after additional cuts.

500d Prediction Before/After Additional Cuts

We have seen in the previous subsections that both the S1-only and S2-only rates

are slightly lower in the 500d dataset than in the 70d dataset. This investigation has

shown that there are no nasty surprises in the event rate of the newer data, and the

70d estimations can be taken as a safe upper limit on the expected number of pileup

background events. For completeness, we provide a table of predictions (Table 7.3)

for the rates seen in the 500d dataset as was done for the 70d dataset.
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Exposure [d] Before Additional Cuts After Additional Cuts
- Nexpected P≥1event Nexpected P≥1event

70 0.00569 0.00567 0.00051 0.00051
500 0.04066 0.03984 0.00363 0.00362

Table 7.3. Pileup background predictions as a function of exposure length using the
S1-only/S2-only event rates from the 500-day dataset

7.6 Pulser Trigger Validation

On May 24th 2016 we added pulser triggers in our data acquisition scheme. Pulser

triggers are ‘events’ triggered by the electronics in order to randomly sample baseline

for noise studies. Pulser triggers are initiated at non-regular intervals throughout

runs for this purpose. These events present a perfect opportunity to test our pileup

background estimation, taking the place of the S1-only events with the added benefit

that they are far more numerous in the data.

We look at the portion of the 500d dataset that contains pulser triggers. There

are 909411 pulser triggers in this dataset. Given the S2-only event rate from the

70-day dataset before additional cuts (2544 events/day) and using the usual Poisson

statistics calculation we would expect (7.9 ± 0.02) pileup events within the pulser

triggers. The error comes from statistical counting errors in the pulser/S2-only rates

propagated appropriately through Eq. 7.2. Alternatively, if we use the rate estimates

from the 500d dataset itself, we expect (6.9 ± 0.01) pulser pileup events.

In order to select pileup events from the pulser triggers we require:

• basic cuts

• veto cuts

• trigger type = 4; the event is a pulser trigger

• S2 f90 < 0.2 (first pulse)

• S2xycorr > 100 PE (first pulse)
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• 40 µs < t[p0] < 334.6 µs; fiducial cut

• Single scatter consistent (if S1 was present at the usual start time)

– npulses = 1

– OR npulses = 2 and second pulse has timing of S3

Note that the single scatter consistent cut has changed with respect to our S2-only

event selection. Previously we allowed events with npulses > 1 and t[p1] − t[p0] >

245.8 µs to pass. This was intended to estimate the amount of the events that pileup

far enough into the S1-only window for the additional pulses to fall off the end. Now

that we are looking at actual pileups we remove this averaging and consider only

events that would pass a single scatter cut as-is.

Of the 909411 pulser trigger events, 9 contain pulses that satisfy the above re-

quirements. This is consistent with predictions. Of the 9 pulser pileup events, 8

contain unresolved S1+S2 pulses, the outlier appearing to have echo-like structure,

see Figure 7.26. With the exception of the single echo-like event, all pulser pileups

would be cut by one or more of the proposed additional cuts.

The ratio of unresolved S1+S2 events to the other S2-only categories is also con-

sistent with the rejection factors of our proposed additional cuts. The S2 pulse shape

and S2 maximum cuts specifically target unresolved S1+S2 pulses and have a com-

bined rejection factor of around 7. If we assume that these cuts target only unresolved

S1+S2 pulses and do so with perfect efficiency, that would imply that at least 86% of

S2-only events are made up by unresolved S1+S2 pulses. The 8 observed unresolved

S1+S2 pulses in 9 pulser pileup events is consistent with 86%.

We can also use the pulser events to check if we are underestimating the amount

of S2-only events in the 70d dataset because we are only considering events triggered

by S2-only pulses. We are likely excluding some number of S2-only events that are

already coincident with other events in the 70d dataset. We can estimate how many
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Figure 7.26. Waveforms of a sample of the nine pulser pileup events

S2-only events may be lost within other events in the following way: the 70-day

dataset has a total livetime of 6184310 s (71.6 d), and the total time that the detector

was ‘busy’ with another event is given by:

tbusy =
∑

all events

(inhibittime+ acquisition window length)

which amounts to 22401.6 s (0.26 d). We have seen in Figure 7.3 that the rate of S2-

only events is constant over the 70-day dataset when we consider only events triggered

on S2-only pulses. Given that the status of the detector (whether it is live, inhibited,

or in the middle of an event) is random, it is safe to assume that the overall rate of S2-

only events in the detector is uniform as well. The ‘overall’ rate of S2-only events here

represents the true rate of S2-only pulses occurring in the detector, including both

those that trigger the detector themselves and those that end up inside of another

event or an inhibit window.
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If this assumption is correct then we can estimate the number of S2-only events

we are missing by the ratio of livetime to tbusy, implying that there are 660 hidden

S2-only events in addition to the 182140 that trigger the detector. This results in an

adjusted S2-only rate of 2554 events/day compared to the originally calculated rate

of 2544 events/day. If we update the Poisson statistics calculation for the expected

number of pileups in the pulser triggers with this adjusted rate, the expected number

of events changes from 7.89 to 7.92. The rate adjustment (< 0.5 %) motivated by the

hidden S2-only events does not significantly impact our estimations.

As an aside, a quirk of the pulser triggers was discovered in the course of this

analysis. First we consider a looser requirement for pileup; the presence of any nonzero

number of pulses inside of the pulser trigger. In a smaller sample of 88611 pulser

triggers used for the first iteration of this analysis, 136 satisfy this loose requirement.

Strangely enough, 21% of these 136 events happen to be the first event in a run and

every one of these first-event pulser pileups have a pulse at exactly the usual S1 start

time and form a normal livetime spectrum. This implies that these events are not true

pulser triggers, but rather events triggered on a real pulse that are then labelled as

a pulser triggers. These suspicious pulser triggers fail the pulser pileup event criteria

because of the fiducial cut.

To conclude, based on S1-only and S2-only event rates in the 70-day dataset

and our Poisson statistics calculation we expect to find 7.9 (6.8 for the 500d) pileup

events in the pulser triggers and find 9. This is consistent with expectations, and

furthermore 8 of the 9 pileup events fail the additional proposed cuts, consistent with

the estimated abundance of unresolved S1+S2 pulses within the S2-only events.

7.7 Final Predictions and Results of the Blind Analysis

This pileup background study was one of the first background studies to be fi-

nalized for the 532d analysis, with the background of concern mitigated to sufficient
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levels. Other backgrounds remained active topics of analysis and the final suite of

analysis cuts, including the definition of the f90 vs S1 signal region, was not deter-

mined until much later. Note that the f90 vs S1 curve from the 70d analysis was

used in the pileup background predictions thus far and will not be used for the 532d.

There are a number of new or updated cuts included in the final analysis suite:

• The 70d f90 vs S1 curve was replaced by the 99% NR acceptance f90 curve

and a maximum f90 cut was imposed

• S1MF was changed to S1pMF, where the cut now focuses on the prompt (ini-

tial 90 ns) region of the S1 signal to better target events with a Cherenkov

component

• A Negative Log Likelihood (NLL) cut was introduced to target Cherenkov +

scintillation events that may have an anomalous spatial pattern

• A cut on the uncorrected size of S2 was introduced (S2uncorr) to target events

with pathologically small S2s

• Radial fiducialization was introduced, and only events with a valid XY recon-

struction are included in the analysis

• Minimum and maximum S2/S1 cuts were included

• The S2 Pulse Shape, TBA vs tdrift, and livetime cuts from this study were

included

Since the pileup background events are accidental coincidences between unasso-

ciated individual pulses, almost any cut that improves data quality has some dis-

crimination power against pileup events. Note that the S2 Maximum cut discussed

for this analysis was not included in the final analysis suite. An S2/S1 maximum

cut was used instead, which had a higher S2-only rejection factor and better physics

motivation for the selection of good nuclear recoil events.
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Just prior to the official unblinding, final predictions were made using a SLAD

v3.3.0 70d dataset that had been updated with the variables necessary to implement

the new cuts. Note that previous predictions used a generic livetime, 500 live-days,

because the length of the dataset had not been finalized at that point in time. The

calculations that follow use the true livetime of 532.4 days.

Many cuts involve S1 and S2 in combination; min and max S2/S1, NLL, TBA vs

tdrift, S1pMF. Because we are working with S1-only and S2-only events individually

for the predictions, the rejection factors are estimated for these events by the following

procedure:

• Assign the (S1-only or S2-only) events a random tdrift from a uniform distri-

bution

• Randomly associate the S1(S2)-only events with the most recently preceding

S2(S1)-only event

• Apply the cut using variables drawn appropriately from the two events

Figs. 7.27 and 7.28 show the number of S1-only and S2-only events passing the full

suite of analysis cuts.

Tabs. 7.4 and 7.5 summarize the number of events passing cumulative cuts and the

fraction passing individual and cumulative cuts for S1-only and S2-only events respec-

tively. Note that the additional livetime cut has now been absorbed into basic cuts.

Only the cuts that have an effect on S1-only or S2-only events appear in the corre-

sponding table(s) (Tabs. 7.4 and 7.5). Values for ‘fraction passing’ are only shown

once we reach a selection that qualifies as “S2-only” or “S1-only” as it was defined

using the original 70d analysis cuts.

After applying all cuts, the final prediction for the expected number of pileup

background events in 532.4 live-days of data is (0.00092 ± 0.00004), where the
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Figure 7.27. Number of S1-only events from the 70d dataset passing consecutive
cuts including all new WIMP search cuts for the 532d analysis

Figure 7.28. Number of S2-only events from the 70d dataset passing consecutive
cuts including all new WIMP search cuts for the 532d analysis
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S1-only events

Cut
Events passing
(cumulative)

Fraction passing
(individual)

Fraction passing
(cumulative)

basic cuts 8153830 – –
veto cuts 4815180 – –
1 pulse 916588 – –

S1 trigger time 652390 – –
S1 not saturated 642040 – –

S1 ROI 92086 – –
NR 99% f90 58447 – –

S1pMF 1421 – –
TBA vs tdrift 1121 0.788 0.788

TPB tail 885 0.789 0.623
NLL 841 0.950 0.592

Table 7.4. Number of S1-only events in the 70d dataset passing the cuts used for
the final analysis of the 532d dataset

error comes from statistical counting errors in the S1/S2-only rates propagated ap-

propriately through Eq. 7.2.

The result of the 532d analysis was a background free WIMP search that gave no

evidence for dark matter. A 90% C.L. upper limit on the dark matter-nucleon spin-

independent cross section of 1.1 ×10−44 cm2 was set for a WIMP mass of 100 GeV/c2.

The limit is shown in Fig. 1.11 and full details of the analysis can be found in Ref. [56].

This limit, though not the strongest in the WIMP direct detection field as a whole,

represents the strongest limit set by an argon-based experiment. The achievement

of zero background events in the signal region is a strong validation of the argon

technique towards the direct detection of dark matter.

7.8 Extension to DarkSide-20k

We can extend the pileup background analysis presented here for DarkSide-50 to

DarkSide-20k. DarkSide-50 has dimensions corresponding to a 37.5 cm full drift and

19 cm radius, DarkSide-20k is proposed to have a 2.4 m full drift and 1.5 m radius.

This gives us the following scale factors:

218



S2-only events

Cut
Events passing
(cumulative)

Fraction passing
(individual)

Fraction passing
(cumulative)

basic cuts 8153830 – –
veto cuts 4815180 – –

pulse requirement 2176320 – –
S2 f90 505789 – –

uncorr S2 171420 0.339 0.339
XY reconstruction 167413 0.977 0.331
minimum S2/S1 160244 0.957 0.317
S2 pulse shape 8025 0.050 0.016

maximum S2/S1 5630 0.702 0.011
radial fiducialization 3093 0.549 0.006

Table 7.5. Number of S2-only events in the 70d dataset passing the cuts used for
the final analysis of the 532d dataset

• Surface area scale factor: 55

• Volume scale factor: 400

• Cross section scale factor: 62

In order to extend our analysis to DarkSide-20k we must make a number of assump-

tions:

• S1-only events are things like surface alphas or events in optically poor areas

(notches in the wall, under the grid ring, etc) and therefore scale like surface

area.

• S2-only events are at least 86% unresolved S1+S2 pulses that will scale like

cross sectional area since they come from events around the top layer of liquid.

Other S2-only events may be true S2s or S3s, which could come from events

anywhere in the detector and in the worst case would scale like volume.

• Assume tfiducial will be defined with the same distances removed from the top

and bottom of the detector as in DarkSide-50, resulting in a 2.32 m fiducial

drift length.
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• Assume all analysis is the same as in the 70-day analysis, before the additional

cuts discussed here.

As discussed in the previous section, the assumption that at least 86% of the S2-

only events are unresolved S1+S2 pulses is motivated by the rejection power of the S2

pulse shape and S2 maximum cuts. These cuts were designed to target the unresolved

S1+S2 pulses and are unlikely to have an effect on true S2s or S3s. Assuming that

these cuts target only unresolved S1+S2 pulses and do so with perfect efficiency,

implies that S2-only events are 86% unresolved S1+S2 pulses. This represents a

worst-case-scenario since both assumptions overestimate the number of remaining

true S2s, which have a much larger scaling factor.

Taking these assumptions into account and using the S1-only and S2-only event

rates from the 70-day dataset after all cuts for the 532d analysis are applied (the last

row in Tabs. 7.4 and 7.5) we expect 0.73 pileup events per day in DarkSide-20k. If we

instead optimistically assume that all S2-only events scale like cross sectional area,

rather than some fraction of them scaling like volume, we expect 0.42 events/day. For

completeness, Table 7.6 summarizes the various scale factors and predicted number

of pileup events for three different volumes for the next phase of the DarkSide exper-

iment. We considered 20 t, 30 t, and 50 t while keeping the ratio of radius to height

consistent with the proposed dimensions of DarkSide-20k.

Size Volume Surface Area Cross Section Nexpected Nexpected (worst)
Scale Factor Scale Factor Scale Factor [events/day] [events/day]

20 t 400 55 62 0.42 0.73
30 t 509 62 84 0.74 1.26
50 t 848 101 118 1.45 2.71

Table 7.6. Extension of pileup background predictions to future DarkSide detectors
of 20t, 30t, and 50t. Nexpected represents an estimate where some S2-only pulses scale
like cross sectional area whereas Nexpected (worst) assumes they all scale like volume
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Certainly, our assumption that the analysis will remain the same between the 532d

analysis and the commissioning of DarkSide-20k is unrealistic. However, this scaling

should serve as a motivation to keep the pileup background in mind when designing

analysis algorithms and cuts for DarkSide-20k. In general, this type of background

cannot be avoided entirely because there will always be events from the topmost

portion of the detector for which S1 and S2 are not sufficiently separated. However,

decreasing the population of radioactive decay contaminants in the bulk (39Ar, 85Kr,

radon) will decrease the number of expected pileup events. The purity of UAr in

DarkSide-20k will be of critical importance for this background, as the S2-only event

rate scales with bulk activity. Similarly, gammas produced from radioactive decay

in the PMT stems (or the photodetector modules in DarkSide-20k) and the cryostat

can interact in the top portion of the detector and contribute to this background.

Therefore, the minimization of gamma activities is also an important step to reduce

the potential pileup background.

Alpha contamination is of concern for this background as well. Radon is a bulk

contaminant and its reduction will reduce the expected pileup background. In ad-

dition, we saw in Chapter 6 that there are 210Po events originating from the top of

the detector, though without S2 pulses they are difficult to pinpoint. Alphas may be

present on the DarkSide-50 grid, the anode, or the walls surrounding the liquid-gas

interface and the gas pocket. Any alpha at the top of the detector that retains its S2

will contribute to the pileup background. Furthermore, the presence of alpha emitters

on surfaces can form a dangerous background to the WIMP search in general. The

wall materials used for DarkSide-20k (Teflon or whatever reflector, TPB) should be

as radioactively clean as possible and thoroughly screened.
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7.9 An Afterword on S2-focused Analyses

Along with the traditional high mass analysis described in this chapter, DarkSide-

50 has also recently performed a search for low-mass dark matter in the form of

WIMP-nucleon [60] and WIMP-electron interactions [63]. The low-mass search was

carried out as an ionization-only analysis, where the gain on the S2 signal allowed us

to probe lower energy events than we have access to in the traditional WIMP search.

The tradeoff is that we give up S1, and therefore lose our event discrimination ability

and fine position reconstruction.

Because these analyses focus entirely on S2 pulses, an understanding of S2 struc-

ture and the mechanism for the presence of events with only S2-like pulses in the

data is critical. This work has shown that unresolved S1+S2 pulses, normal S2s, and

small or echo-like S2s can all appear as ‘S2-like’ to analysis algorithms that focus on

f90 and pulse size. Though the work presented here extends to higher energies than

is relevant for the low-mass searches, the knowledge gained from the investigation of

small amplitude S2 signals may be beneficial.
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CHAPTER 8

CONCLUSIONS

This work presents several analyses of alpha radiation events in the DarkSide-50

detector.

In Chapter 7 we thoroughly investigated the possibility of a pileup background

formed through the accidental coincidence of S1-only surface alpha events with S2-

like pulses. We showed that the probability to see a pileup background event in the

DarkSide-50 signal region becomes non-negligible for exposures approaching 500 live-

days. This background can be mitigated through the creation of additional analysis

cuts for candidate WIMP events. When all new cuts in the finalized 532 live-day

WIMP search analysis were considered, the final prediction for pileup events was

(0.00092 ± 0.00004), with no background events observed after unblinding. A rough

estimation of the pileup background in DarkSide-20k predicts 0.4 to 0.7 pileup events

per day. This motivates bulk argon purity and the strength of future pulse-finding

algorithms.

Chapter 6 described simulations of 210Po alphas traveling through layers of surface

materials, with the goal of better understanding the origin of the 210Po contamination

in DarkSide-50. Reasonable agreement was obtained between data and simulation.

The data seems to prefer alphas distributed throughout TPB, but also deeper into

the non-scintillating surface materials underneath. However, some degeneracy be-

tween depth distribution and roughness of the TPB layer has been observed in other

experiments.
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Because of their known energies and half lives, alpha particles from radioactive

decays can be used as a tool. In Chapter 5 we studied RnPo coincidences in the

detector in order to measure the mobility of 218Po ions in liquid argon (µion) and the

fraction of charged daughters (f) produced in the 222Rn decay. Combining the results

from data and simulations we find µion = (8.6 ± 1.3) V/cm2 and f = 0.373 ± 0.029.

We also used the identified coincidences to set an upper limit on the resolution of our

XY algorithm, XYres < (1.37 ± 0.08) cm, and to set an upper limit on the motion of

liquid argon within the TPC, vLAr ≤ 0.43 mm/s.

This work has lead to the improved sensitivity of the DarkSide-50 experiment

through the rejection of a newly discovered pileup background. We have also deepened

our understanding of surface and bulk contamination stemming from the uranium

chain.
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APPENDIX A

RNPO COINCIDENCE SIMULATION CODE

//----------------------------------------------------

// Monte Carlo to get effective decay time spectrum for RnPo coincidences

// given charged daughter fraction and ion mobility

//

// Use by: $ root -b -q RnPoSim.C++O

//----------------------

#include <cmath>

#include <iostream>

#include <cstdlib>

#include "TH1D.h"

#include "TH2D.h"

#include "TFile.h"

#include "TMath.h"

#include "TRandom.h"

#include "TRandom3.h"

std::vector<double> SimRnPoEvent(double chargedFraction, double ionMobility,

double fullDrift, int nsteps, double dt) {

//Declare and initialize relevant parameters

double eMobility = 456.; //[cm^2/Vs]

double mobilRatio = ionMobility/eMobility;

double time = 0.;

double tau = 268.341; //[s]

double probToDecay = dt/tau;

//Simulation gives:

enum EventInfo {wasCharged, tdrift_i, tdrift_f, decay_time, lostAtCathode};

std::vector<double> RnPoEventInfo = {-1, -1, -1, -1, 0};

//Is the daughter charged for this RnPo coincidence?

if((double)rand()/RAND_MAX < chargedFraction) RnPoEventInfo[wasCharged] = 1;

else RnPoEventInfo[wasCharged] = 0;

//Assign random starting tdrift from a uniform distribution

RnPoEventInfo[tdrift_i] = (double) fullDrift*rand()/RAND_MAX;

RnPoEventInfo[tdrift_f] = RnPoEventInfo[tdrift_i]; //to be updated later
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//Step through time allowing charged daughters to drift and Po to decay

for(int i = 1; i < nsteps; i++) {

time = i*dt;

if(RnPoEventInfo[wasCharged] == 1) RnPoEventInfo[tdrift_f] +=

mobilRatio*dt*1000000; //[us]

if((double)rand()/RAND_MAX < probToDecay) {

RnPoEventInfo[decay_time] = time;

if(RnPoEventInfo[tdrift_f] >= fullDrift) {

RnPoEventInfo[tdrift_f] = fullDrift; //dead end at the cathode

if((double)rand()/RAND_MAX < 0.5) RnPoEventInfo[lostAtCathode] = 1; //if

it makes it there 50/50 we lose it

}

break;

}

}

return RnPoEventInfo;

} // End SimRnPoEvent

void RnPoSim() {

double ionMobilityEXO = 0.00039; //cm^2/Vs from EXO-200 (neglecting impurities)

double chargedFracEXO = 0.5; //also from EXO-200

double fullDrift = 373.; //(DS-50 cathode ~376, 373 approximates a cut)

int nSteps = 3000; //number of time steps for each event

double dt = 1.; //[s] width of time steps

TFile* outfile = new TFile("RnPoSim.root", "RECREATE");

std::cout << "Writing output to " << outfile->GetName() << std::endl;

//Declare

histograms--------------------------------------------------------------

//Plots for ALL

TH1D* h_tdrift_f = new TH1D("h_tdrift_f", "Z-position of Po-218 at time of

decay; tdrift [us]", 125, 0, 400);

TH1D* h_tdecay_gen = new TH1D("h_tdecay_gen", "Decay time for all generated

RnPo pairs; decay_time [s]", 125, 0, nSteps*dt);

TH1D* h_tdecay_obs = new TH1D("h_tdecay_obs", "Decay time for observed RnPo

pairs; decay_time [s]", 125, 0, nSteps*dt);

TH1D* h_tdecay_obs_nocath = new TH1D("h_tdecay_obs_nocath", "Decay time for

observed RnPo pairs not on cathode; decay_time[s]", 125, 0, nSteps*dt);

TH1D* h_tdecay_obs_cath = new TH1D("h_tdecay_obs_cath", "Decay time for

observed RnPo pairs on cathode; decay_time[s]", 125, 0, nSteps*dt);

TH2D* h_dtdrift_tdecay = new TH2D("h_dtdrift_tdecay", "dtdrift versus decay

time for all observed RnPo pairs; decay_time [s]; dtdrift [us]", 1000, 0,

nSteps*dt, 1000, 0, 400);

TH2D* h_dtdrift_tdecay_nocath = new TH2D("h_dtdrift_tdecay_nocath", "dtdrift

versus decay time for obs RnPo pairs not on cathode; decay_time [s];

dtdrift [us]", 1000, 0, nSteps*dt, 1000, 0, 400);
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TH1D* h_lostAtCath = new TH1D("h_lostAtCath", "Was the simulated Po lost at the

cathode?", 3, 0, 3);

//Plots for CHARGED daughters (‘qd’)

TH1D* h_qd_tdrift_f = new TH1D("h_qd_tdrift_f", "Z-position of charged Po-218

at time of decay; tdrift [us]", 125, 0, 400);

TH1D* h_qd_tdecay_obs_nocath = new TH1D("h_qd_tdecay_obs_nocath", "Decay time

for observed, charged RnPo pairs not on cathode; decay_time[s]", 125, 0,

nSteps*dt);

TH1D* h_qd_tdecay_obs_cath = new TH1D("h_qd_tdecay_obs_cath", "Decay time for

observed, charged RnPo pairs on cathode; decay_time[s]", 125, 0, nSteps*dt);

TH1D* h_qd_tdecay_obs_all = new TH1D("h_qd_tdecay_obs_all", "Decay time for all

observed, charged RnPo pairs; decay_time[s]", 125, 0, nSteps*dt);

TH2D* h_qd_dtdrift_tdecay = new TH2D("h_qd_dtdrift_tdecay", "dtdrift vs decay

time for all observed, charged RnPo pairs; decay_time [s]; dtdrift [us]",

1000, 0, nSteps*dt, 1000, 0, 400);

TH2D* h_qd_dtdrift_tdecay_nocath = new TH2D("h_qd_dtdrift_tdecay_nocath",

"dtdrift vs decay time for obs, charged RnPo pairs not on cathode;

decay_time [s]; dtdrift [us]", 1000, 0, nSteps*dt, 1000, 0, 400);

TH1D* h_qd_lostAtCath = new TH1D("h_qd_lostAtCath", "Was the simulated, charged

Po lost at the cathode?", 3, 0, 3);

//Plots for UNCHARGED daughters (‘unqd’)

TH1D* h_unqd_tdrift_f = new TH1D("h_unqd_tdrift_f", "Z-position of uncharged

Po-218 at time of decay; tdrift [us]", 125, 0, 400);

TH1D* h_unqd_tdecay_obs_nocath = new TH1D("h_unqd_tdecay_obs_nocath", "Decay

time for observed, uncharged RnPo pairs not on cathode; decay_time[s]",

125, 0, nSteps*dt);

TH1D* h_unqd_tdecay_obs_all = new TH1D("h_unqd_tdecay_obs_all", "Decay time for

all observed, uncharged RnPo pairs; decay_time[s]", 125, 0, nSteps*dt);

TH2D* h_unqd_dtdrift_tdecay = new TH2D("h_unqd_dtdrift_tdecay", "dtdrift vs

decay time for all obs, uncharged RnPo pairs; decay_time [s]; dtdrift

[us]", 1000, 0, nSteps*dt, 1000, 0, 400);

TH2D* h_unqd_dtdrift_tdecay_nocath = new TH2D("h_unqd_dtdrift_tdecay_nocath",

"dtdrift vs decay time for obs, uncharged RnPo pairs not on cathode;

decay_time [s]; dtdrift [us]", 1000, 0, nSteps*dt, 1000, 0, 400);

TH1D* h_unqd_lostAtCath = new TH1D("h_unqd_lostAtCath", "Was the simulated,

uncharged Po lost at the cathode?", 3, 0, 3);

//---------------------------------------------------------------------------------

int nEvents = 1e8;

std::vector<double> EventInfo(5); //temp array

for(int i = 0; i < nEvents; i++) {

if(i % (nEvents/10) == 0) std::cout << "Processing event " << i << "/" <<

nEvents << std::endl;

//Simulate event

EventInfo = SimRnPoEvent(chargedFracEXO, ionMobilityEXO, fullDrift, nSteps,

dt);

//Fill histograms for all events, and charged/uncharged daughters separately:
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//Recall, EventInfo = {wasCharged, tdrift_i, tdrift_f, decay_time,

lostAtCathode}

h_tdrift_f->Fill(EventInfo[2]);

h_tdecay_gen->Fill(EventInfo[3]);

h_lostAtCath->Fill(EventInfo[4]);

if(EventInfo[0] == 1) { //charged

h_qd_tdrift_f->Fill(EventInfo[2]);

h_qd_lostAtCath->Fill(EventInfo[4]);

}

if(EventInfo[0] == 0) { //uncharged

h_unqd_tdrift_f->Fill(EventInfo[2]);

h_unqd_lostAtCath->Fill(EventInfo[4]);

}

if(EventInfo[4] == 0) { //not lost at cathode

h_tdecay_obs->Fill(EventInfo[3]);

h_dtdrift_tdecay->Fill(EventInfo[3], EventInfo[2] - EventInfo[1]);

if(EventInfo[0] == 1) { //charged

h_qd_tdecay_obs_all->Fill(EventInfo[3]);

h_qd_dtdrift_tdecay->Fill(EventInfo[3], EventInfo[2] - EventInfo[1]);

}

if(EventInfo[0] == 0) { //uncharged

h_unqd_tdecay_obs_all->Fill(EventInfo[3]);

h_unqd_dtdrift_tdecay->Fill(EventInfo[3], EventInfo[2] - EventInfo[1]);

}

if(EventInfo[2] < 373) { //doesn’t end on cathode

h_dtdrift_tdecay_nocath->Fill(EventInfo[3], EventInfo[2] - EventInfo[1]);

h_tdecay_obs_nocath->Fill(EventInfo[3]);

if(EventInfo[0] == 1) { //charged

h_qd_tdecay_obs_nocath->Fill(EventInfo[3]);

h_qd_dtdrift_tdecay_nocath->Fill(EventInfo[3], EventInfo[2] -

EventInfo[1]);

}

if(EventInfo[0] == 0) { //uncharged

h_unqd_tdecay_obs_nocath->Fill(EventInfo[3]);

h_unqd_dtdrift_tdecay_nocath->Fill(EventInfo[3], EventInfo[2] -

EventInfo[1]);

}

}

if(EventInfo[2] == 373) { //ends on cathode

h_tdecay_obs_cath->Fill(EventInfo[3]);

if(EventInfo[0] == 1) h_qd_tdecay_obs_cath->Fill(EventInfo[3]); //charged,

on cathode

}

}

}

outfile->Write();

outfile->Close();

}

228



APPENDIX B

PO-210 SURFACE SIMULATION CODE

There are three pieces of code reproduced here:

• TrackEnergy.C

• SurfSim cath.C

• SurfSim wall.C

Given arrays of dE
dx
{nuc} and dE

dx
{elec} from SRIM, TrackEnergy.C generates the

graphs of distance traveled versus energy lost that are used in the simulations. The

code provided generates the relevant plots for TPB, ITO, and Teflon. SurfSim cath.C

and SurfSim wall.C are simulations of the cathode and wall geometries, respectively.

B.1 TrackEnergy.C

//----------------------------------------------

// Macro to get energy lost along track length

// from SRIM data.

//

// Saves graphs to TrackEnergy.root

// for use in SurfSim*.C

//

// Use by: $ root -b -a TrackEnergy.C++O

//----------------------------------------------

#include <iostream>

#include <cmath>

#include "TH1F.h"

#include "TMath.h"

#include "TGraph.h"

#include "TVectorD.h"

#include "TF1.h"
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#include "TSpline.h"

#include "TH2D.h"

#include "TCanvas.h"

#include "TFile.h"

TH2D* makeHist(double E_isotope, std::vector<double> energies,

std::vector<double> dxde, TH2D* h, int n_array) {

// Declare and draw derivative plots

TGraph* dxde_e = new TGraph(n_array, &(energies[0]), &(dxde[0]));

// Function defined as cubic spline between TGraph points

TF1* f = new TF1("f", [&](double *x, double *p){ return p[0]*dxde_e->Eval(x[0],

0, "S"); }, 0, 10, 1);

f->SetParameter(0, 1);

// Perform integrals of dx/dE as a function of E_lost

// Declare variables

int npoints = 200;

double step = E_isotope/npoints;

int bin;

double E;

double E_vals[npoints];

double d_mat[npoints];

for (int i = 0; i < npoints; i++) {

E = i*step;

E_vals[i] = E_isotope - E;

d_mat[i] = -f->Integral(E_isotope, E);

bin = h->GetBin(h->GetXaxis()->FindBin(d_mat[i]),

h->GetYaxis()->FindBin(E_isotope));

if(h->GetBinContent(bin) == 0) h->Fill(d_mat[i], E_isotope, E_vals[i]);

}

return h;

} // End of makeHist function

TGraph* makeGraph(TString material, double E_isotope, std::vector<double>

energies, std::vector<double> dxde, bool plots, int n_array) {

// Declare and draw derivative plots

TGraph* dxde_e = new TGraph(n_array, &(energies[0]), &(dxde[0]));

// Function defined as cubic spline between TGraph points

TF1* f = new TF1("f", [&](double *x, double *p){ return p[0]*dxde_e->Eval(x[0],

0, "S"); }, 0, 10, 1);

f->SetParameter(0, 1);
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if (plots) {

dxde_e->SetTitle("dx/dE{elec+nuc} vs E for Alphas in Material; E [MeV];

dx/dE{elec+nuc} [mm/MeV]");

dxde_e->SetLineColor(kGreen); dxde_e->SetMarkerColor(kGreen);

dxde_e->SetMarkerStyle(5);

TCanvas* c1 = new TCanvas(); c1->cd();

dxde_e->Draw("ALP");

}

// Perform integrals of dx/dE as a function of E_lost

// Declare variables

int npoints = 1000;

double step = E_isotope/npoints;

double E;

double E_vals[npoints];

double d_mat[npoints];

for (int i = 0; i < npoints; i++) {

E = i*step;

E_vals[i] = E_isotope - E;

d_mat[i] = -f->Integral(E_isotope, E);

}

TGraph* dmat_Elost = new TGraph(npoints, d_mat, E_vals);

dmat_Elost->SetTitle("Distance Traveled in Material vs Energy Lost for Alpha

Particles; D_mat [mm]; E_lost[MeV]");

dmat_Elost->SetLineColor(kBlue); dmat_Elost->SetMarkerColor(kBlue);

dmat_Elost->SetMarkerStyle(5);

TCanvas* c2 = new TCanvas(); c2->cd();

dmat_Elost->Draw();

std::cout << "Range of Po-210 alpha if it loses all of its energy in " <<

material << ":\n"

<< "E = Po-210\tRange = " << f->Integral(0, E_isotope) << std::endl;

return dmat_Elost;

} // End of makeGraph function

void TrackEnergy() {

// Import SRIM E and dE/dx as vectors

const int n_array = 79;

double energies[n_array] = {0.0100, 0.0110, 0.0120, 0.0130, 0.0140, 0.0150,

0.0160, 0.0170, 0.0180, 0.0200, 0.0225, 0.0250, 0.0275, 0.0300, 0.0325,

0.0350, 0.0375, 0.0400, 0.0450, 0.0500, 0.0550, 0.0600, 0.0650, 0.0700,

0.0800, 0.0900, 0.1000, 0.1100, 0.1200, 0.1300, 0.140, 0.150, 0.160, 0.170,
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0.180, 0.200, 0.225, 0.250, 0.275, 0.300, 0.325, 0.350, 0.375, 0.400,

0.450, 0.500, 0.550, 0.600, 0.650, 0.700, 0.800, 0.900, 1.000, 1.100,

1.200, 1.300, 1.400, 1.500, 1.600, 1.700, 1.800, 2.000, 2.250, 2.500,

2.750, 3.000, 3.250, 3.500, 3.750, 4.000, 4.500, 5.000, 5.500, 6.000,

6.500, 7.000, 8.000, 9.000, 10.00}; // MeV

double dedx_nuc_TPB[n_array] = { 9.262E-02, 8.745E-02, 8.290E-02, 7.887E-02,

7.526E-02, 7.202E-02, 6.908E-02, 6.640E-02, 6.395E-02, 5.962E-02,

5.506E-02, 5.123E-02, 4.795E-02, 4.512E-02, 4.263E-02, 4.044E-02,

3.849E-02, 3.673E-02, 3.371E-02, 3.119E-02, 2.906E-02, 2.723E-02,

2.564E-02, 2.424E-02, 2.189E-02, 1.999E-02, 1.673E-02, 1.553E-02,

1.451E-02, 1.363E-02, 1.285E-02, 1.217E-02, 1.156E-02, 1.102E-02,

1.053E-02, 9.672E-03, 8.795E-03, 8.075E-03, 7.471E-03, 6.958E-03,

6.516E-03, 6.131E-03, 5.791E-03, 5.490E-03, 4.979E-03, 4.561E-03,

4.211E-03, 3.915E-03, 3.660E-03, 3.439E-03, 3.072E-03, 2.780E-03,

2.541E-03, 2.343E-03, 2.175E-03, 2.031E-03, 1.906E-03, 1.796E-03,

1.699E-03, 1.612E-03, 1.535E-03, 1.401E-03, 1.265E-03, 1.154E-03,

1.062E-03, 9.847E-04, 9.182E-04, 8.605E-04, 8.100E-04, 7.655E-04,

6.902E-04, 6.291E-04, 5.784E-04, 5.356E-04, 4.990E-04, 4.673E-04,

4.151E-04, 3.739E-04, 3.404E-04}; // dE/dx(NUC), Stopping units =

MeV/(mg/cm^2)

double dedx_elec_TPB[n_array] = { 4.987E-01, 5.233E-01, 5.470E-01, 5.697E-01,

5.916E-01, 6.128E-01, 6.332E-01, 6.530E-01, 6.723E-01, 7.091E-01,

7.524E-01, 7.930E-01, 8.311E-01, 8.670E-01, 9.007E-01, 9.325E-01,

9.625E-01, 9.908E-01, 1.043E+00, 1.090E+00, 1.134E+00, 1.175E+00,

1.214E+00, 1.251E+00, 1.323E+00, 1.392E+00, 1.372E+00, 1.429E+00,

1.484E+00, 1.535E+00, 1.584E+00, 1.630E+00, 1.673E+00, 1.715E+00,

1.754E+00, 1.825E+00, 1.904E+00, 1.972E+00, 2.030E+00, 2.081E+00,

2.124E+00, 2.160E+00, 2.191E+00, 2.216E+00, 2.253E+00, 2.274E+00,

2.283E+00, 2.282E+00, 2.274E+00, 2.259E+00, 2.218E+00, 2.167E+00,

2.110E+00, 2.052E+00, 1.993E+00, 1.936E+00, 1.880E+00, 1.827E+00,

1.776E+00, 1.727E+00, 1.681E+00, 1.595E+00, 1.498E+00, 1.411E+00,

1.334E+00, 1.265E+00, 1.203E+00, 1.147E+00, 1.096E+00, 1.050E+00,

9.678E-01, 8.983E-01, 8.386E-01, 7.867E-01, 7.411E-01, 7.008E-01,

6.327E-01, 5.859E-01, 5.405E-01}; //dE/dx(ELEC), Stopping units =

MeV/(mg/cm^2)

double dedx_nuc_ITO[n_array] = { 2.134E-02, 2.061E-02, 1.994E-02, 1.933E-02,

1.876E-02, 1.823E-02, 1.774E-02, 1.729E-02, 1.686E-02, 1.608E-02,

1.522E-02, 1.447E-02, 1.380E-02, 1.321E-02, 1.267E-02, 1.219E-02,

1.175E-02, 1.134E-02, 1.062E-02, 1.001E-02, 9.468E-03, 8.994E-03,

8.573E-03, 8.195E-03, 7.545E-03, 7.004E-03, 6.545E-03, 6.151E-03,

5.807E-03, 5.505E-03, 5.236E-03, 4.996E-03, 4.780E-03, 4.584E-03,

4.405E-03, 4.091E-03, 3.762E-03, 3.488E-03, 3.255E-03, 3.055E-03,

2.880E-03, 2.726E-03, 2.589E-03, 2.467E-03, 2.257E-03, 2.084E-03,

1.937E-03, 1.811E-03, 1.702E-03, 1.607E-03, 1.447E-03, 1.319E-03,

1.213E-03, 1.124E-03, 1.049E-03, 9.833E-04, 9.262E-04, 8.759E-04,

8.312E-04, 7.911E-04, 7.551E-04, 6.926E-04, 6.287E-04, 5.763E-04,

5.325E-04, 4.953E-04, 4.633E-04, 4.355E-04, 4.110E-04, 3.893E-04,
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3.525E-04, 3.225E-04, 2.975E-04, 2.763E-04, 2.581E-04, 2.423E-04,

2.161E-04, 1.953E-04, 1.784E-04}; // same stopping units as above

double dedx_elec_ITO[n_array] = { 1.075E-01, 1.132E-01, 1.186E-01, 1.238E-01,

1.289E-01, 1.339E-01, 1.387E-01, 1.434E-01, 1.479E-01, 1.568E-01,

1.675E-01, 1.777E-01, 1.875E-01, 1.970E-01, 2.062E-01, 2.151E-01,

2.239E-01, 2.324E-01, 2.488E-01, 2.646E-01, 2.798E-01, 2.944E-01,

3.085E-01, 3.222E-01, 3.481E-01, 3.724E-01, 3.952E-01, 4.165E-01,

4.365E-01, 4.552E-01, 4.728E-01, 4.893E-01, 5.049E-01, 5.195E-01,

5.334E-01, 5.591E-01, 5.879E-01, 6.138E-01, 6.372E-01, 6.584E-01,

6.776E-01, 6.950E-01, 7.107E-01, 7.249E-01, 7.491E-01, 7.682E-01,

7.828E-01, 7.937E-01, 8.014E-01, 8.062E-01, 8.093E-01, 8.057E-01,

7.975E-01, 7.862E-01, 7.730E-01, 7.587E-01, 7.437E-01, 7.285E-01,

7.133E-01, 6.983E-01, 6.837E-01, 6.555E-01, 6.229E-01, 5.931E-01,

5.661E-01, 5.415E-01, 5.190E-01, 4.986E-01, 4.799E-01, 4.627E-01,

4.322E-01, 4.060E-01, 3.833E-01, 3.633E-01, 3.456E-01, 3.298E-01,

3.028E-01, 2.834E-01, 2.648E-01}; // same stopping units as above

double dedx_elec_Teflon[n_array] = { 2.546E-01, 2.671E-01, 2.790E-01,

2.904E-01, 3.014E-01, 3.121E-01, 3.223E-01, 3.323E-01, 3.419E-01,

3.604E-01, 3.822E-01, 4.027E-01, 4.220E-01, 4.403E-01, 4.577E-01,

4.742E-01, 4.899E-01, 5.049E-01, 5.330E-01, 5.590E-01, 5.832E-01,

6.060E-01, 6.277E-01, 6.485E-01, 6.878E-01, 7.247E-01, 7.594E-01,

7.923E-01, 8.233E-01, 8.527E-01, 8.806E-01, 9.071E-01, 9.323E-01,

9.562E-01, 9.791E-01, 1.022E+00, 1.069E+00, 1.112E+00, 1.151E+00,

1.185E+00, 1.216E+00, 1.243E+00, 1.268E+00, 1.290E+00, 1.328E+00,

1.357E+00, 1.380E+00, 1.397E+00, 1.409E+00, 1.418E+00, 1.425E+00,

1.422E+00, 1.413E+00, 1.398E+00, 1.381E+00, 1.361E+00, 1.340E+00,

1.317E+00, 1.295E+00, 1.271E+00, 1.248E+00, 1.202E+00, 1.145E+00,

1.091E+00, 1.041E+00, 9.930E-01, 9.488E-01, 9.080E-01, 8.702E-01,

8.354E-01, 7.733E-01, 7.201E-01, 6.739E-01, 6.337E-01, 5.984E-01,

5.670E-01, 5.140E-01, 4.734E-01, 4.356E-01}; // same stopping units as above

double dedx_nuc_Teflon[n_array] = { 5.418E-02, 5.147E-02, 4.905E-02, 4.689E-02,

4.493E-02, 4.316E-02, 4.154E-02, 4.006E-02, 3.870E-02, 3.627E-02,

3.368E-02, 3.149E-02, 2.959E-02, 2.795E-02, 2.649E-02, 2.520E-02,

2.405E-02, 2.300E-02, 2.120E-02, 1.969E-02, 1.840E-02, 1.729E-02,

1.631E-02, 1.546E-02, 1.401E-02, 1.284E-02, 1.186E-02, 1.104E-02,

1.033E-02, 9.718E-03, 9.180E-03, 8.703E-03, 8.278E-03, 7.896E-03,

7.551E-03, 6.951E-03, 6.333E-03, 5.824E-03, 5.397E-03, 5.033E-03,

4.718E-03, 4.444E-03, 4.202E-03, 3.987E-03, 3.621E-03, 3.321E-03,

3.070E-03, 2.857E-03, 2.674E-03, 2.514E-03, 2.249E-03, 2.038E-03,

1.865E-03, 1.721E-03, 1.599E-03, 1.494E-03, 1.403E-03, 1.323E-03,

1.252E-03, 1.189E-03, 1.132E-03, 1.034E-03, 9.348E-04, 8.537E-04,

7.863E-04, 7.292E-04, 6.804E-04, 6.380E-04, 6.008E-04, 5.680E-04,

5.126E-04, 4.675E-04, 4.300E-04, 3.985E-04, 3.714E-04, 3.480E-04,

3.094E-04, 2.788E-04, 2.540E-04}; // same stopping units as above

// Get quantities for plots: correct units + inverted dx/dE
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float conversion_TPB = 107.9; // Convert to stopping units = MeV/mm

float conversion_ITO = 713.98; // These numbers come from SRIM tables

float conversion_Teflon = 219.99;

std::vector<double> energy_vec(n_array);

std::vector<double> dxde_TPB(n_array);

std::vector<double> dxde_ITO(n_array);

std::vector<double> dxde_Teflon(n_array);

std::vector<double> dedx_TPB(n_array);

for (int i = 0; i < 79; i++) {

energy_vec[i] = energies[i];

dedx_TPB[i] = (dedx_nuc_TPB[i] + dedx_elec_TPB[i]) * conversion_TPB;

dxde_TPB[i] = 1/( (dedx_nuc_TPB[i] + dedx_elec_TPB[i]) * conversion_TPB );

dxde_ITO[i] = 1/( (dedx_nuc_ITO[i] + dedx_elec_ITO[i]) * conversion_ITO );

dxde_Teflon[i] = 1/( (dedx_nuc_Teflon[i] + dedx_elec_Teflon[i]) *

conversion_Teflon );

}

double E_po210 = 5.30438; // Specific to Po-210, calcuations need to be made in

reference to starting energy

TFile* outfile = new TFile("TrackEnergy.root", "RECREATE");

outfile->cd();

// Get 2D hist of energy lost versus distance traveled, starting energy

// For TPB only

TH2D* h_dmat_Ei_El = new TH2D("h_dmat_Ei_El", "Energy lost by an #alpha given

d_{mat} and E_{start};dmat[mm];E_{start}[MeV]", 101, 0, 0.05, 101, 0, 6);

std::cout << "\n\nConstructing histogram of E_lost vs E_start and d_mat for

TPB: " << std::endl;

for(double i = 0; i < 6.0; i+=6.0/100) h_dmat_Ei_El = makeHist(i, energy_vec,

dxde_TPB, h_dmat_Ei_El, n_array);

std::cout << "...complete." << std::endl;

// Also save dxde (all materials) for use in multi-layer simulation

TGraph* dxdE_TPB = new TGraph(n_array, energies, &(dxde_TPB[0]));

dxdE_TPB->SetTitle("dx/dE for an alpha particle in TPB; E [MeV];

dx/dE_{nuc+elec} [mm/MeV]");

dxdE_TPB->SetLineWidth(2); dxdE_TPB->SetLineColor(kViolet);

TGraph* dxdE_ITO = new TGraph(n_array, energies, &(dxde_ITO[0]));

dxdE_ITO->SetTitle("dx/dE for an alpha particle in ITO; E [MeV];

dx/dE_{nuc+elec} [mm/MeV]");

dxdE_ITO->SetLineWidth(2); dxdE_ITO->SetLineColor(15);

TGraph* dxdE_Teflon = new TGraph(n_array, energies, &(dxde_Teflon[0]));

dxdE_Teflon->SetTitle("dx/dE for an alpha particle in Teflon; E [MeV];

dx/dE_{nuc+elec} [mm/MeV]");

dxdE_Teflon->SetLineWidth(2);

std::cout << "\n\nSaved dxdE plots for all materials." << std::endl;

//dE/dx for TPB
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TGraph* dEdx_TPB = new TGraph(n_array, energies, &(dedx_TPB[0]));

dEdx_TPB->SetTitle("dE/dx for an alpha particle in TPB; E [MeV];

dE/dx_{nuc+elec} [mm/MeV]");

dEdx_TPB->SetLineWidth(2); dEdx_TPB->SetLineColor(kViolet);

// Get distance travelled vs energy lost for all materials

std::cout << "\n\nGetting distance travelled vs energy lost: " << std::endl;

TGraph* dTPB_ETPB = makeGraph("TPB", E_po210, energy_vec, dxde_TPB, 0, n_array);

TGraph* dITO_EITO = makeGraph("ITO", E_po210, energy_vec, dxde_ITO, 0, n_array);

TGraph* dTeflon_ETeflon = makeGraph("Teflon", E_po210, energy_vec, dxde_Teflon,

0, n_array);

dxdE_TPB->Write("dxdE_TPB");

dxdE_ITO->Write("dxdE_ITO");

dxdE_Teflon->Write("dxdE_Teflon");

dEdx_TPB->Write("dEdx_TPB");

dTPB_ETPB->Write("dTPB_ETPB");

dITO_EITO->Write("dITO_EITO");

dTeflon_ETeflon->Write("dTeflon_ETeflon");

outfile->Write();

outfile->Close();

}

B.2 SurfSim cath.C

//-------------------------------------------------

// Simulation code for alphas traveling through

// cathode surface layers (TPB, ITO, Teflon...)

//

// Usage: $ root -b -q SurfSim_cath.C

//-------------------------------------------------

#include <cmath>

#include <iostream>

#include <cstdlib>

#include "TH1D.h"

#include "TH2D.h"

#include "TF1.h"

#include "TGraph.h"

#include "TFile.h"

#include "TMath.h"

#include "TRandom.h"

#include "TRandom3.h"
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double dxde_func(double* x, double* params) {

double p0 = params[0];

double p1 = params[1];

double p2 = params[2];

double p3 = params[3];

double p4 = params[4];

double p5 = params[5];

double p6 = params[6];

double p7 = params[7];

double t = x[0];

return p0 + p1*t + p2/(t+p3) + p4/(t*t+p5) + p6*(t+p7)*(t+p7);

}

// Two cases: uniformly distributed through TPB or at TPB/ITO interface

// Define Simulation Function

std::vector<TH1D*> Simulation(int simType, TGraph* g_dvE, TGraph* g_dxde, TH2D*

h_d_Ei_El, TGraph* g_dxde2) {

// Basic parameters

int nevents = 1000000;

int print_12 = nevents/10;

int print_34 = nevents/10;

double isotope_energy = 5.30438; //MeV, Po-210

double TPB_LY = 4000./5.30438; //PE/MeV, 247 from TPBSim

double LAr_LY = 7157.0; //PE/MeV, from bulk Rn-222 sample

// Variables to be filled on the fly

double r_start; double phi_start;

double x_start; double y_start; double z_start;

double phi_prop; double theta_prop; double z_end;

double d_TPB; double E_TPB; double E_LAr;

double d_ITO; double S1; double S1_smeared;

double thickness_var;

double TPB_thick_rand;

TGraph g_temp = TGraph();

// Declare histograms

// Give them unique names to save all simulations

TString s0, s1, s2, s3, s4;

TString detail;

s0 = "h_E_TPB"; s1 = "h_E_LAr"; s2 = "h_LY_combo"; s3 = "h_d_TPB";

if(simType == 0) {s0 += "_Top_TPB"; s1 += "_Top_TPB"; s2 += "_Top_TPB"; s3 +=

"_Top_TPB"; detail = "Top TPB";}

if(simType == 1) {s0 += "_Unif_TPB"; s1 += "_Unif_TPB"; s2 += "_Unif_TPB"; s3

+= "_Unif_TPB"; detail = "Uniform TPB";}

if(simType == 2) {s0 += "_Bott_TPB"; s1 += "_Bott_TPB"; s2 += "_Bott_TPB"; s3

+= "_Bott_TPB"; detail = "Below TPB";}
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if(simType == 3) {s0 += "_Deep_ITO"; s1 += "_Deep_ITO"; s2 += "_Deep_ITO"; s3

+= "_Deep_ITO"; detail = "Deep ITO";}

if(simType == 4) {s0 += "_Bott_ITO"; s1 += "_Bott_ITO"; s2 += "_Bott_ITO"; s3

+= "_Bott_ITO"; detail = "Below ITO";}

if(simType == 5) {s0 += "_Deeper_ITO"; s1 += "_Deeper_ITO"; s2 +=

"_Deeper_ITO"; s3 += "_Deeper_ITO"; detail = "Deeper than ITO";}

std::vector<TH1D*> histograms(4); // A single object that can be returned

histograms[0] = new TH1D(s0, "Energy lost in the TPB; E_TPB[MeV]", 500, 0,

isotope_energy);

histograms[1] = new TH1D(s1, "Energy deposited in the LAr; E_LAr[MeV]", 500, 0,

isotope_energy+1);

histograms[2] = new TH1D(s2, "Light from TPB and LAr scintillation;PE", 2000,

0, 60000);

histograms[3] = new TH1D(s3, "Distance travelled in TPB; d_TPB[mm]", 1000, 0,

0.01);

// Initialize random number generator for poisson smearing

TRandom3 r(0);

// Define function and fit dxde for SimType 3/4

TF1* func = new TF1("dxde_func", dxde_func, 0.1, 10, 8);

if(simType == 3 | simType == 4 | simType == 5) g_dxde->Fit("dxde_func", "N Q

R");

TF1* f = new TF1("f", [&](double *x, double *p){ return

p[0]*g_dxde->Eval(x[0]); }, 0, 10, 1);

f->SetParameter(0, 1);

TF1* f2 = new TF1("f2", [&](double *x, double *p){ return

p[0]*g_dxde2->Eval(x[0]); }, 0, 10, 1);

f2->SetParameter(0, 1);

// Describe surfaces

// Cathode: ITO --> TPB --> LAr

double ITO_start = 0;

double ITO_thick = 1.5E-5; //mm (15nm)

double extra_depth = 300.0E-5;

double deepest_depth = 50.0E-3;

double TPB_start = ITO_start + ITO_thick;

double TPB_center = 0.000230; //g/cm^2 (+/-0.000010)

double TPB_edge = 0.000190; //g/cm^2 (+/-0.000015)

double TPB_density = 1.079; //g/cm^3

double TPB_thick_center = TPB_center/TPB_density*10; //convert to mm

double TPB_thick_edge = TPB_edge/TPB_density*10; //convert to mm

double Cathode_A = 101223.0; //mm^2, TPB radius = 17.95cm

double Cathode_r = 179.5; //mm

double Cathode_phi = 2*TMath::Pi();

double LAr_start; // LAr start defined below for varying TPB thickness
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// Calculated from SRIM in TrackEnergy.C

double TPB_range = f->Integral(0, isotope_energy);

double ITO_range = f2->Integral(0, isotope_energy);

// Start Event Loop *******

for(int i = 0; i < nevents; i++) {

if(simType < 3 && i % print_12 == 0) std::cout << detail << ": Processing "

<< i << "/" << nevents << std::endl;

if(simType > 2 && i % print_34 == 0) std::cout << detail << ": Processing "

<< i << "/" << nevents << std::endl;

// Distribute tracks in layer(s)

r_start = Cathode_r*rand()/RAND_MAX + Cathode_r*rand()/RAND_MAX;

if(r_start > Cathode_r) r_start = 2*Cathode_r - r_start;

phi_start = Cathode_phi*rand()/RAND_MAX;

// Implement varying thickness of TPB

thickness_var = 0.25*TPB_thick_center;

TPB_thick_rand = TPB_thick_center + (2*thickness_var*rand()/RAND_MAX -

thickness_var);

LAr_start = TPB_start + TPB_thick_rand;

x_start = r_start*cos(phi_start);

y_start = r_start*sin(phi_start);

if(simType == 0) z_start = LAr_start;

if(simType == 1) z_start = TPB_start + TPB_thick_rand*rand()/RAND_MAX;

if(simType == 2) z_start = TPB_start; // All at ITO/TPB interface

if(simType == 3) z_start = ITO_thick - extra_depth*rand()/RAND_MAX;

if(simType == 4) z_start = ITO_start; // All at bottom of ITO layer

if(simType == 5) z_start = ITO_thick - deepest_depth*rand()/RAND_MAX;

// Propagate tracks

phi_prop = Cathode_phi*rand()/RAND_MAX;

theta_prop = Cathode_phi/2*rand()/RAND_MAX;

// At this point we have to split procedure by simulation type

// *****

if(simType == 0 || simType == 1 || simType == 2) {

z_end = TPB_range*cos(theta_prop) + z_start;

if(z_end > TPB_start && z_end <= LAr_start) d_TPB = TPB_range; // Fully

contained in TPB

if(z_end <= TPB_start) d_TPB = (TPB_start - z_start)/cos(theta_prop); //

Enters cathode

if(z_end > LAr_start) d_TPB = (TPB_thick_rand + TPB_start -

z_start)/cos(theta_prop); //Enters LAr

// Get energy lost to TPB

E_TPB = g_dvE->Eval(d_TPB);
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// Collect ’S1’ that makes it to LAr (no scintillation behind TPB layer)

if(z_end > LAr_start) E_LAr = isotope_energy - E_TPB;

else E_LAr = 0;

} // SimTypes 0,1,2

// *****

if(simType == 3 || simType == 4 || simType == 5) {

z_end = ITO_range*cos(theta_prop) + z_start;

if(z_end > ITO_start && z_end <= TPB_start) d_ITO = ITO_range; // Fully

contained in ITO

if(z_end <= ITO_start) d_ITO = ITO_range; // Fully contained or

back-going... no energy makes it to next layer

if(z_end > TPB_start) d_ITO = (ITO_thick + ITO_start -

z_start)/cos(theta_prop); //Enters TPB

if(d_ITO == ITO_range) {

E_TPB = 0;

E_LAr = 0;

S1_smeared = 0;

d_TPB = 0;

}

else {

double E_start = isotope_energy - g_dvE->Eval(d_ITO);

double event_range = func->Integral(0, E_start);

z_end = event_range*cos(theta_prop) + TPB_start; // continues moving on

same trajectory

if(z_end > TPB_start && z_end <= LAr_start) {

d_TPB = event_range; // Fully contained in TPB

E_TPB = E_start;

E_LAr = 0;

}

if(z_end > LAr_start) {

d_TPB = (TPB_thick_rand)/cos(theta_prop); //Enters LAr

E_TPB = h_d_Ei_El->Interpolate(d_TPB, E_start);

}

E_LAr = E_start - E_TPB;

}

} // SimType 3,4,5

// Get total light produced by TPB and LAr

S1 = E_TPB*TPB_LY+E_LAr*LAr_LY;

S1_smeared = r.Gaus(S1, 4.5*sqrt(S1));

// Simulate breakdown of TBA-correction near cathode, downward smear of up to

10% in energy
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// Apply only for events in between PMTs (65.6% of cath surface area)

if((double)rand()/RAND_MAX < 0.656) S1_smeared =

S1_smeared*(1-0.1*rand()/RAND_MAX);

// Fill histograms

histograms[0]->Fill(E_TPB);

histograms[1]->Fill(E_LAr);

histograms[3]->Fill(d_TPB);

if(S1_smeared > 0) histograms[2]->Fill(S1_smeared);

} // End Event Loop

histograms[2]->Scale(1/histograms[2]->Integral()); // normalize the spectrum

for comparison

return histograms;

} // End of Simulation function

void SurfSim_cath() {

std::cout << "Starting Simulation..." << std::endl;

// Get E_lost vs d_TPB from TrackEnergy Simulation:

TFile* f = new TFile("TrackEnergy.root", "READ");

TGraph* g_dvE_TPB = (TGraph*)f->Get("dTPB_ETPB");

TGraph* g_dvE_ITO = (TGraph*)f->Get("dITO_EITO");

TGraph* g_dxdE_TPB = (TGraph*)f->Get("dxdE_TPB");

TGraph* g_dxdE_ITO = (TGraph*)f->Get("dxdE_ITO");

TH2D* h_dmat_Ei_El = (TH2D*)f->Get("h_dmat_Ei_El");

TFile* outfile = new TFile("SurfSim_cath.root", "RECREATE");

outfile->cd();

std::cout << "Writing output to " << outfile->GetName() << std::endl;

// Simulation type options (first function argument)

// 0 = all at top of TPB layer

// 1 = uniform in TPB

// 2 = all at bottom of TPB layer

// 3 = uniform in ITO

// 4 = all at bottom of ITO layer

// 5 = deeper in non-scintillating materials

std::vector<TH1D*> top_TPB(4);

top_TPB = Simulation(0, g_dvE_TPB, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_ITO);

std::vector<TH1D*> uniform_TPB(4);

uniform_TPB = Simulation(1, g_dvE_TPB, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_ITO);

std::vector<TH1D*> bottom_TPB(4);

bottom_TPB = Simulation(2, g_dvE_TPB, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_ITO);
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std::vector<TH1D*> deep_ITO(4);

deep_ITO = Simulation(3, g_dvE_ITO, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_ITO);

std::vector<TH1D*> bottom_ITO(4);

bottom_ITO = Simulation(4, g_dvE_ITO, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_ITO);

std::vector<TH1D*> deeper_ITO(4);

deeper_ITO = Simulation(5, g_dvE_ITO, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_ITO);

std::cout << "Done!" << std::endl;

for(int i = 0; i < 4; i++) {

top_TPB[i]->SetLineColor(kOrange);

uniform_TPB[i]->SetLineColor(8);

bottom_TPB[i]->SetLineColor(kBlue);

deep_ITO[i]->SetLineColor(kRed);

deeper_ITO[i]->SetLineColor(16);

bottom_ITO[i]->SetLineColor(kViolet);

}

outfile->Write();

outfile->Close();

}

B.3 SurfSim wall.C

//-------------------------------------------------

// Simulation code for alphas traveling through

// surface layers (TPB, Teflon...)

//

// Usage: $ root -b -q SurfSim_wall.C++O

//-------------------------------------------------

#include <cmath>

#include <iostream>

#include <cstdlib>

#include "TH1D.h"

#include "TH2D.h"

#include "TF1.h"

#include "TGraph.h"

#include "TFile.h"

#include "TMath.h"

#include "TRandom.h"

#include "TRandom3.h"

double dxde_func(double* x, double* params) {

241



double p0 = params[0];

double p1 = params[1];

double p2 = params[2];

double p3 = params[3];

double p4 = params[4];

double p5 = params[5];

double p6 = params[6];

double p7 = params[7];

double t = x[0];

return p0 + p1*t + p2/(t+p3) + p4/(t*t+p5) + p6*(t+p7)*(t+p7);

}

// Define Simulation Function

std::vector<TH1D*> Simulation(int simType, TGraph* g_dvE, TGraph* g_dxde, TH2D*

h_d_Ei_El, TGraph* g_dxde_Tef) {

// Basic parameters

int nevents = 1000000;

int print_12 = nevents/10;

int print_34 = nevents/10;

double isotope_energy = 5.30438; //MeV, Po-210

double TPB_LY = 4000./5.30438; //PE/MeV, 247 from TPBSIM

double LAr_LY = 7157.0; //PE/MeV, from bulk Rn-222 sample

// Variables to be filled on the fly

double r_start; double phi_start;

double x_start; double y_start; double z_start;

double phi_prop; double theta_prop; double z_end;

double d_TPB; double E_TPB; double E_LAr;

double d_Tef; double S1; double S1_smeared;

TGraph g_temp = TGraph();

// Declare histograms

// Give them unique names in order to save them to file later with additional

simulations

TString s0, s1, s2, s3, s4;

TString detail;

s0 = "h_E_TPB"; s1 = "h_E_LAr"; s2 = "h_LY_combo"; s3 = "h_d_TPB";

if(simType == 0) {s0 += "_Top_TPB"; s1 += "_Top_TPB"; s2 += "_Top_TPB"; s3 +=

"_Top_TPB"; detail = "Top TPB";}

if(simType == 1) {s0 += "_Unif_TPB"; s1 += "_Unif_TPB"; s2 += "_Unif_TPB"; s3

+= "_Unif_TPB"; detail = "Uniform TPB";}

if(simType == 2) {s0 += "_Bott_TPB"; s1 += "_Bott_TPB"; s2 += "_Bott_TPB"; s3

+= "_Bott_TPB"; detail = "Below TPB";}

if(simType == 3) {s0 += "_Unif_Tef"; s1 += "_Unif_Tef"; s2 += "_Unif_Tef"; s3

+= "_Unif_Tef"; detail = "Unif Teflon";}

if(simType == 4) {s0 += "_Dist_Tef"; s1 += "_Dist_Tef"; s2 += "_Dist_Tef"; s3

+= "_Dist_Tef"; detail = "Dist Teflon";}
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std::vector<TH1D*> histograms(4); // A single object that can be returned

histograms[0] = new TH1D(s0, "Energy lost in the TPB; E_TPB[MeV]", 500, 0,

isotope_energy);

histograms[1] = new TH1D(s1, "Energy deposited in the LAr; E_LAr[MeV]", 500, 0,

isotope_energy+1);

histograms[2] = new TH1D(s2, "Light from TPB and LAr scintillation;PE", 2000,

0, 60000);

histograms[3] = new TH1D(s3, "Distance travelled in TPB; d_TPB[mm]", 1000, 0,

0.05);

// Initialize random number generator for poisson smearing

TRandom3 r(0);

// Define function and fit dxde for SimType 3/4

TF1* func = new TF1("dxde_func", dxde_func, 0.1, 10, 8);

if(simType == 3 | simType == 4) g_dxde->Fit("dxde_func", "N Q R");

// Function evaluating TGraph for TPB dxdE

TF1* f = new TF1("f", [&](double *x, double *p){ return

p[0]*g_dxde->Eval(x[0]); }, 0, 10, 1);

f->SetParameter(0, 1);

// Function evaluating TGraph for Teflon dxdE

TF1* f2 = new TF1("f2", [&](double *x, double *p){ return

p[0]*g_dxde_Tef->Eval(x[0]); }, 0, 10, 1);

f2->SetParameter(0, 1);

// Functions for Teflon starting distribution

// Bi-210 nucleus from beta decay can travel ~287a = 0.0000287mm (SRIM)

// [note that I used full Q value (~50keV), which is unphysically large in

order to see an appreciable change in the spectrum]

// Po-210 nulceus from beta decay can travel ~2932a = 0.0002932mm (SRIM)

// [note that I used full Q value (~1.2MeV), which is unphysically large in

order to see an appreciable change in the spectrum]

TF1* Bi210_NR = new TF1("Bi210_NR", "cos(TMath::Pi()*x/(2*0.0000287))", 0,

0.0000287);

TF1* Po210_NR = new TF1("Po210_NR", "cos(TMath::Pi()*x/(2*0.0002932))", 0,

0.0002932);

// Describe surfaces

// Walls: Tef --> TPB --> LAr

double Tef_start = 0;

double Tef_thick = 0.1; //mm, arbitrary, chosen to be larger than deepest

deposition in simType 4

double TPB_start = Tef_start + Tef_thick;

double TPB_center = 0.000230; //g/cm^2 (+/-0.000010)

double TPB_edge = 0.000190; //g/cm^2 (+/-0.000015)

double TPB_density = 1.079; //g/cm^3

double TPB_thick_center = TPB_center/TPB_density*10; //convert to mm
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double TPB_thick_edge = TPB_edge/TPB_density*10; //convert to mm

double Cathode_A = 101223.0; //mm^2, TPB radius = 17.95cm

double Cathode_r = 179.5; //mm

double Cathode_phi = 2*TMath::Pi();

double LAr_start = TPB_start + TPB_thick_center;

// Calculated from SRIM in TrackEnergy.C

double TPB_range = f->Integral(0, isotope_energy); //mm

double Tef_range = f2->Integral(0, isotope_energy); //mm

// Start Event Loop ******

for(int i = 0; i < nevents; i++) {

if(simType < 3 && i % print_12 == 0) std::cout << detail << ": Processing "

<< i << "/" << nevents << std::endl;

if(simType > 2 && i % print_34 == 0) std::cout << detail << ": Processing "

<< i << "/" << nevents << std::endl;

// Distribute tracks in layer(s)

r_start = Cathode_r*rand()/RAND_MAX + Cathode_r*rand()/RAND_MAX;

if(r_start > Cathode_r) r_start = 2*Cathode_r - r_start;

phi_start = Cathode_phi*rand()/RAND_MAX;

x_start = r_start*cos(phi_start);

y_start = r_start*sin(phi_start);

if(simType == 0) z_start = LAr_start;

if(simType == 1) z_start = TPB_start + TPB_thick_center*rand()/RAND_MAX;

if(simType == 2) z_start = TPB_start; // All at Tef/TPB interface

if(simType == 3) z_start = Tef_start + Tef_thick*rand()/RAND_MAX;

if(simType == 4) z_start = (Tef_thick - Tef_start) - Bi210_NR->GetRandom() -

Po210_NR->GetRandom();

// Propagate tracks

phi_prop = Cathode_phi*rand()/RAND_MAX;

theta_prop = Cathode_phi/2*rand()/RAND_MAX;

// At this point we have to split procedure by simulation type

// ********

if(simType == 0 || simType == 1 || simType == 2) {

z_end = TPB_range*cos(theta_prop) + z_start;

if(z_end > TPB_start && z_end <= LAr_start) d_TPB = TPB_range; // Fully

contained in TPB

if(z_end <= TPB_start) d_TPB = (TPB_start - z_start)/cos(theta_prop); //

Enters cathode

if(z_end > LAr_start) d_TPB = (TPB_thick_center + TPB_start -

z_start)/cos(theta_prop); //Enters LAr

// Get energy lost to TPB

E_TPB = g_dvE->Eval(d_TPB);
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// Collect ’S1’ that makes it to LAr (no scintillation behind TPB layer)

if(z_end > LAr_start) E_LAr = isotope_energy - E_TPB;

else E_LAr = 0;

} // SimTypes 0,1,2

// ********

if(simType == 3 || simType == 4) {

z_end = Tef_range*cos(theta_prop) + z_start;

if(z_end > Tef_start && z_end <= TPB_start) d_Tef = Tef_range; // Fully

contained in Tef

if(z_end <= Tef_start) d_Tef = Tef_range; // Fully contained or

back-going... no energy makes it to next layer

if(z_end > TPB_start) d_Tef = (Tef_thick + Tef_start -

z_start)/cos(theta_prop); //Enters TPB

if(d_Tef == Tef_range) {

E_TPB = 0;

E_LAr = 0;

// S1_smeared = 0;

d_TPB = 0;

}

else {

double E_start = isotope_energy - g_dvE->Eval(d_Tef);

double event_range = func->Integral(0, E_start); // range of particle with

energy left from Tef in TPB

z_end = event_range*cos(theta_prop) + TPB_start; // continues moving on same

trajectory

if(z_end > TPB_start && z_end <= LAr_start) {

d_TPB = event_range; // Fully contained in TPB

E_TPB = E_start;

E_LAr = 0;

}

if(z_end > LAr_start) {

d_TPB = (TPB_thick_center)/cos(theta_prop); //Enters LAr

E_TPB = h_d_Ei_El->Interpolate(d_TPB, E_start);

}

E_LAr = E_start - E_TPB;

}

} // SimType 3, 4

// Get total light produced by TPB and LAr

S1 = E_TPB*TPB_LY+E_LAr*LAr_LY;

S1_smeared = r.Gaus(S1, 4.5*sqrt(S1)); // extra smearing
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// Fill histograms

histograms[0]->Fill(E_TPB);

histograms[1]->Fill(E_LAr);

histograms[3]->Fill(d_TPB);

if(S1_smeared > 0) histograms[2]->Fill(S1_smeared);

} // End Event Loop

histograms[2]->Scale(1/histograms[2]->Integral()); // normalize the spectrum

for comparison

return histograms;

} // End Simulation function

void SurfSim_wall() {

std::cout << "Starting Simulation..." << std::endl;

// Get E_lost vs d_TPB from TrackEnergy Simulation:

TFile* f = new TFile("TrackEnergy.root", "READ");

TGraph* g_dvE_TPB = (TGraph*)f->Get("dTPB_ETPB");

TGraph* g_dvE_Teflon = (TGraph*)f->Get("dTeflon_ETeflon");

TGraph* g_dxdE_TPB = (TGraph*)f->Get("dxdE_TPB");

TGraph* g_dxdE_Teflon = (TGraph*)f->Get("dxdE_Teflon");

TH2D* h_dmat_Ei_El = (TH2D*)f->Get("h_dmat_Ei_El");

TFile* outfile = new TFile("SurfSim_Wall.root", "RECREATE");

outfile->cd();

std::cout << "Writing output to " << outfile->GetName() << std::endl;

// Simulation type options (first function argument)

// 0 = all at top of TPB layer

// 1 = uniform in TPB

// 2 = all at bottom of TPB layer

// 3 = distributed in Teflon

// 4 = uniform in Teflon

std::vector<TH1D*> top_TPB(4);

top_TPB = Simulation(0, g_dvE_TPB, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_Teflon);

std::vector<TH1D*> uniform_TPB(4);

uniform_TPB = Simulation(1, g_dvE_TPB, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_Teflon);

std::vector<TH1D*> bottom_TPB(4);

bottom_TPB = Simulation(2, g_dvE_TPB, g_dxdE_TPB, h_dmat_Ei_El, g_dxdE_Teflon);

std::vector<TH1D*> uniform_Teflon(4);
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uniform_Teflon = Simulation(3, g_dvE_Teflon, g_dxdE_TPB, h_dmat_Ei_El,

g_dxdE_Teflon);

std::vector<TH1D*> dist_Teflon(4);

dist_Teflon = Simulation(4, g_dvE_Teflon, g_dxdE_TPB, h_dmat_Ei_El,

g_dxdE_Teflon);

std::cout << "Done!" << std::endl;

for(int i = 0; i < 4; i++) {

top_TPB[i]->SetLineColor(kOrange);

uniform_TPB[i]->SetLineColor(8);

bottom_TPB[i]->SetLineColor(kBlue);

uniform_Teflon[i]->SetLineColor(kRed);

dist_Teflon[i]->SetLineColor(kViolet);

}

outfile->Write();

outfile->Close();

}
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